Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747 Garching, Germany.
Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai, Ibaraki 319-1106, Japan.
J Colloid Interface Sci. 2024 Jul;665:801-813. doi: 10.1016/j.jcis.2024.03.156. Epub 2024 Mar 23.
The co-assembly of polyelectrolytes (PE) with proteins offers a promising approach for designing complex structures with customizable morphologies, charge distribution, and stability for targeted cargo delivery. However, the complexity of protein structure limits our ability to predict the properties of the formed nanoparticles, and our goal is to identify the key triggers of the morphological transition in protein/PE complexes and evaluate their ability to encapsulate multivalent ionic drugs. A positively charged PE can assemble with a protein at pH above isoelectric point due to the electrostatic attraction and disassemble at pH below isoelectric point due to the repulsion. The additional hydrophilic block of the polymer should stabilize the particles in solution and enable them to encapsulate a negatively charged drug in the presence of PE excess. We demonstrated that diblock copolymers, poly(ethylene oxide)-block-poly(N,N-dimethylaminoethyl methacrylate) and poly(ethylene oxide)-block-poly(N,N,N-trimethylammonioethyl methacrylate), consisting of a polycation block and a neutral hydrophilic block, reversibly co-assemble with insulin in pH range between 5 and 8. Using small-angle neutron and X-ray scattering (SANS, SAXS), we showed that insulin arrangement within formed particles is controlled by intermolecular electrostatic forces between protein molecules, and can be tuned by varying ionic strength. For the first time, we observed by fluorescence that formed protein/PE complexes with excess of positive charges exhibited potential for encapsulating and controlled release of negatively charged bivalent drugs, protoporphyrin-IX and zinc(II) protoporphyrin-IX, enabling the development of nanocarriers for combination therapies with adjustable charge, stability, internal structure, and size.
聚电解质(PE)与蛋白质的共组装为设计具有可定制形态、电荷分布和稳定性的复杂结构提供了一种很有前途的方法,可用于靶向货物输送。然而,蛋白质结构的复杂性限制了我们预测形成的纳米颗粒性质的能力,我们的目标是确定蛋白质/PE 复合物中形态转变的关键触发因素,并评估它们封装多价离子药物的能力。带正电荷的 PE 在 pH 值高于等电点时可以与蛋白质组装,这是由于静电吸引;在 pH 值低于等电点时则会由于排斥而解体。聚合物的额外亲水性嵌段应该稳定颗粒在溶液中的状态,并使它们能够在 PE 过量存在的情况下封装带负电荷的药物。我们证明了由聚阳离子嵌段和中性亲水性嵌段组成的两亲性嵌段共聚物,即聚(氧化乙烯)-嵌-聚(N,N-二甲基氨基乙基甲基丙烯酸酯)和聚(氧化乙烯)-嵌-聚(N,N,N-三甲基铵乙基甲基丙烯酸酯),可以在 pH 值为 5 到 8 之间与胰岛素可逆共组装。我们使用小角中子和 X 射线散射(SANS、SAXS)表明,在形成的颗粒中胰岛素的排列受分子间静电相互作用的控制,可以通过改变离子强度进行调节。我们首次通过荧光观察到,带正电荷过量的形成的蛋白质/PE 复合物具有封装和控制释放带负电荷的二价药物原卟啉-IX 和锌(II)原卟啉-IX 的潜力,这使得可用于开发具有可调电荷、稳定性、内部结构和尺寸的组合疗法的纳米载体成为可能。