Arnittali Maria, Tegopoulos Sokratis N, Kyritsis Apostolos, Harmandaris Vagelis, Papagiannopoulos Aristeidis, Rissanou Anastassia N
Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas, IACM/FORTH, GR-71110 Heraklion, Greece.
Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Greece.
Polymers (Basel). 2024 Sep 11;16(18):2565. doi: 10.3390/polym16182565.
This study provides a detailed picture of how a protein (lysozyme) complexes with a poly(acrylic acid) polyelectrolyte (PAA) in water at the atomic level using a combination of all-atom molecular dynamics simulations and experiments. The effect of PAA and temperature on the protein's structure is explored. The simulations reveal that a lysozyme's structure is relatively stable except from local conformational changes induced by the presence of PAA and temperature increase. The effect of a specific thermal treatment on the complexation process is investigated, revealing both structural and energetic changes. Certain types of secondary structures (i.e., α-helix) are found to undergo a partially irreversible shift upon thermal treatment, which aligns qualitatively with experimental observations. This uncovers the origins of thermally induced aggregation of lysozyme with PAA and points to new PAA/lysozyme bonds that are formed and potentially enhance the stability in the complexes. As the temperature changes, distinct amino acids are found to exhibit the closest proximity to PAA, resulting into different PAA/lysozyme interactions; consequently, a different complexation pathway is followed. Energy calculations reveal the dominant role of electrostatic interactions. This detailed information can be useful for designing new biopolymer/protein materials and understanding protein function under immobilization of polyelectrolytes and upon mild denaturation processes.
本研究结合全原子分子动力学模拟和实验,在原子水平上详细描绘了一种蛋白质(溶菌酶)与聚(丙烯酸)聚电解质(PAA)在水中的复合情况。探究了PAA和温度对蛋白质结构的影响。模拟结果表明,除了由PAA的存在和温度升高引起的局部构象变化外,溶菌酶的结构相对稳定。研究了特定热处理对复合过程的影响,揭示了结构和能量的变化。发现某些类型的二级结构(即α-螺旋)在热处理后会发生部分不可逆的转变,这与实验观察结果在定性上是一致的。这揭示了溶菌酶与PAA热诱导聚集的起源,并指出了新形成的PAA/溶菌酶键,这些键可能增强复合物的稳定性。随着温度变化,发现不同的氨基酸与PAA的距离最近,导致不同的PAA/溶菌酶相互作用;因此,遵循了不同的复合途径。能量计算揭示了静电相互作用的主导作用。这些详细信息对于设计新型生物聚合物/蛋白质材料以及理解在聚电解质固定化和温和变性过程下的蛋白质功能可能是有用的。