Suppr超能文献

适用于个性化上颌骨修复和裂隙缺损体积估计的可适应级联配准。

Adaptable cascaded registration for personalized maxilla completion and cleft defect volume estimation.

机构信息

Key Laboratory of Machine Perception (MOE), Department of Machine Intelligence, School of Intelligence Science and Technology, Peking University, Beijing, China.

China Telecom Research Institute, Beijing, China.

出版信息

Med Phys. 2024 Jun;51(6):4283-4296. doi: 10.1002/mp.17046. Epub 2024 Mar 31.

Abstract

BACKGROUND

Cone-beam computed tomography (CBCT) images provide high-resolution insights into the underlying craniofacial anomaly in patients with cleft lip and palate (CLP), requiring non-negligible annotation costs to measure the cleft defect for the guidance of the clinical secondary alveolar bone graft procedures. Considering the cumbersome volumetric image acquisition, there is a lack of paired CLP CBCTs and normal CBCTs for learning-based anatomical structure restoration models. Nowadays, the registration-based method relieves the annotation burden, though one-shot registration and the regular mask are limited to handling fine-grained shape variations and harmony between restored bony tissues and the defected maxilla.

PURPOSE

This study aimed to design and evaluate a novel method for deformable partial registration of the CLP CBCTs and normal CBCTs, enabling personalized maxilla completion and cleft defect volume prediction from CLP CBCTs.

METHODS

We proposed an adaptable deep registration framework for personalized maxilla completion and cleft defect volume prediction from CLP CBCTs. The key ingredient was a cascaded partial registration to exploit the maxillary morphology prior and attribute transfer. Cascaded registration with coarse-to-fine registration fields handled morphological variations of cleft defects and fine-grained maxillary restoration. We designed an adaptable cleft defect mask and volumetric Boolean operators for reliable voxel filling of the defected maxilla. A total of 36 clinically obtained CLP CBCTs were used to train and validate the proposed model, among which 22 CLP CBCTs were used to generate a training dataset with 440 synthetic CBCTs by B-spline deformation-based data augmentation and the remaining for testing. The proposed model was evaluated on maxilla completion and cleft defect volume prediction from clinically obtained unilateral and bilateral CLP CBCTs.

RESULTS

Extensive experiments demonstrated the effectiveness of the adaptable cleft defect mask and the cascaded partial registration on maxilla completion and cleft defect volume prediction. The proposed method achieved state-of-the-art performances with the Dice similarity coefficient of 0.90 0.02 on the restored maxilla and 0.84 0.04 on the estimated cleft defect, respectively. The average Hausdorff distance between the estimated cleft defect and the manually annotated ground truth was 0.30 0.08 mm. The relative volume error of the cleft defect was 0.08. The proposed model allowed for the prediction of cleft defect maps that were in line with the ground truth in the challenging unilateral and bilateral CLP CBCTs.

CONCLUSIONS

The results suggest that the proposed adaptable deep registration model enables patient-specific maxilla completion and automatic annotation of cleft defects, relieving tedious voxel-wise annotation and image acquisition burdens.

摘要

背景

对于唇腭裂(CLP)患者,锥形束 CT(CBCT)图像提供了有关颅面畸形的高分辨率信息,需要进行大量注释才能测量裂隙缺陷,以指导临床二次牙槽骨移植手术。考虑到体积图像采集的繁琐性,缺乏用于基于学习的解剖结构恢复模型的配对 CLP CBCT 和正常 CBCT。如今,基于配准的方法减轻了注释负担,尽管单次配准和常规掩模仅限于处理精细的形状变化以及恢复的骨组织与缺陷上颌之间的和谐。

目的

本研究旨在设计和评估一种用于 CLP CBCT 和正常 CBCT 的可变形部分配准的新方法,从而能够从 CLP CBCT 中进行个性化上颌骨完成和裂隙缺陷体积预测。

方法

我们提出了一种用于从 CLP CBCT 中进行个性化上颌骨完成和裂隙缺陷体积预测的自适应深度配准框架。关键要素是级联部分配准,以利用上颌形态学先验和属性传递。具有粗到精配准场的级联配准处理了裂隙缺陷的形态变化和精细的上颌修复。我们设计了一个自适应的裂隙缺陷掩模和体素布尔运算符,用于可靠地填充缺陷上颌的体素。总共使用 36 个临床获得的 CLP CBCT 来训练和验证所提出的模型,其中 22 个 CLP CBCT 用于通过 B 样条变形数据增强生成具有 440 个合成 CBCT 的训练数据集,其余用于测试。在所提出的模型中,从临床获得的单侧和双侧 CLP CBCT 中评估了上颌骨完成和裂隙缺陷体积预测。

结果

广泛的实验证明了自适应裂隙缺陷掩模和级联部分配准在完成上颌骨和预测裂隙缺陷体积方面的有效性。该方法在恢复的上颌骨上达到了 0.90 0.02 的 Dice 相似系数和在估计的裂隙缺陷上达到了 0.84 0.04 的 Dice 相似系数,分别达到了最先进的性能。估计的裂隙缺陷与手动注释地面实况之间的平均 Hausdorff 距离为 0.30 0.08mm。裂隙缺陷的相对体积误差为 0.08。该模型允许预测与单侧和双侧 CLP CBCT 中地面实况一致的裂隙缺陷图。

结论

结果表明,所提出的自适应深度配准模型能够实现患者特异性上颌骨完成和裂隙缺陷的自动注释,减轻繁琐的体素注释和图像采集负担。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验