Suppr超能文献

基于 MRI 的放射组学预测膀胱癌的组织病理学分级:与传统 MRI 的比较。

Prediction of histopathologic grades of bladder cancer with radiomics based on MRI: Comparison with traditional MRI.

机构信息

Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.

Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.

出版信息

Urol Oncol. 2024 Jun;42(6):176.e9-176.e20. doi: 10.1016/j.urolonc.2024.02.008. Epub 2024 Mar 30.

Abstract

PURPOSE

To compare biparametric magnetic resonance imaging (bp-MRI) radiomics signatures and traditional MRI model for the preoperative prediction of bladder cancer (BCa) grade.

MATERIALS AND METHODS

This retrospective study included 255 consecutive patients with pathologically confirmed 113 low-grade and 142 high-grade BCa. The traditional MRI nomogram model was developed using univariate and multivariate logistic regression by the mean apparent diffusion coefficient (ADC), vesical imaging reporting and data system, tumor size, and the number of tumors. Volumes of interest were manually drawn on T-weighted imaging (TWI) and ADC maps by 2 radiologists. Using one-way analysis of variance, correlation, and least absolute shrinkage and selection operator methods to select features. Then, a logistic regression classifier was used to develop the radiomics signatures. Receiver operating characteristic (ROC) analysis was used to compare the diagnostic abilities of the radiomics and traditional MRI models by the DeLong test. Finally, decision curve analysis was performed by estimating the clinical usefulness of the 2 models.

RESULTS

The area under the ROC curves (AUCs) of the traditional MRI model were 0.841 in the training cohort and 0.806 in the validation cohort. The AUCs of the 3 groups of radiomics model [ADC, TWI, bp-MRI (ADC and TWI)] were 0.888, 0.875, and 0.899 in the training cohort and 0.863, 0.805, and 0.867 in the validation cohort, respectively. The combined radiomics model achieved higher AUCs than the traditional MRI model. decision curve analysis indicated that the radiomics model had higher net benefits than the traditional MRI model.

CONCLUSION

The bp-MRI radiomics model may help distinguish high-grade and low-grade BCa and outperforming the traditional MRI model. Multicenter validation is needed to acquire high-level evidence for its clinical application.

摘要

目的

比较双参数磁共振成像(bp-MRI)放射组学特征与传统 MRI 模型在膀胱癌(BCa)分级术前预测中的作用。

材料与方法

本回顾性研究纳入了 255 例经病理证实的 113 例低级别和 142 例高级别 BCa 患者。使用单变量和多变量逻辑回归方法,通过平均表观扩散系数(ADC)、膀胱影像报告和数据系统(BI-RADS)、肿瘤大小和肿瘤数量,建立传统 MRI 列线图模型。由 2 位放射科医生在 T2 加权成像(TWI)和 ADC 图上手动勾画感兴趣区。采用单因素方差分析、相关性和最小绝对收缩和选择算子方法来选择特征。然后,使用逻辑回归分类器来建立放射组学特征。采用 DeLong 检验比较放射组学和传统 MRI 模型的诊断效能。最后,通过估计 2 种模型的临床实用性,进行决策曲线分析。

结果

传统 MRI 模型在训练队列中的 AUC 为 0.841,在验证队列中的 AUC 为 0.806。ADC、TWI、bp-MRI(ADC 和 TWI)3 组放射组学模型的 AUC 在训练队列中分别为 0.888、0.875 和 0.899,在验证队列中分别为 0.863、0.805 和 0.867。联合放射组学模型的 AUC 高于传统 MRI 模型。决策曲线分析表明,放射组学模型的净获益高于传统 MRI 模型。

结论

bp-MRI 放射组学模型有助于区分高级别和低级别 BCa,且性能优于传统 MRI 模型。需要多中心验证来获取其临床应用的高级别证据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验