Program in Trauma, University of Maryland School of Medicine, 22. S. Greene Street, G7K19, Baltimore, MD, 21201, USA.
Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, USA.
Sci Rep. 2024 Mar 31;14(1):7618. doi: 10.1038/s41598-024-57538-5.
Determination of prognosis in the triage process after traumatic brain injury (TBI) is difficult to achieve. Current severity measures like the Trauma and injury severity score (TRISS) and revised trauma score (RTS) rely on additional information from the Glasgow Coma Scale (GCS) and the Injury Severity Score (ISS) which may be inaccurate or delayed, limiting their usefulness in the rapid triage setting. We hypothesized that machine learning based estimations of GCS and ISS obtained through modeling of continuous vital sign features could be used to rapidly derive an automated RTS and TRISS. We derived variables from electrocardiograms (ECG), photoplethysmography (PPG), and blood pressure using continuous data obtained in the first 15 min of admission to build machine learning models of GCS and ISS (ML-GCS and ML-ISS). We compared the TRISS and RTS using ML-ISS and ML-GCS and its value using the actual ISS and GCS in predicting in-hospital mortality. Models were tested in TBI with systemic injury (head abbreviated injury scale (AIS) ≥ 1), and isolated TBI (head AIS ≥ 1 and other AIS ≤ 1). The area under the receiver operating characteristic curve (AUROC) was used to evaluate model performance. A total of 21,077 cases (2009-2015) were in the training set. 6057 cases from 2016 to 2017 were used for testing, with 472 (7.8%) severe TBI (GCS 3-8), 223 (3.7%) moderate TBI (GCS 9-12), and 5913 (88.5%) mild TBI (GCS 13-15). In the TBI with systemic injury group, ML-TRISS had similar AUROC (0.963) to TRISS (0.965) in predicting mortality. ML-RTS had AUROC (0.823) and RTS had AUROC 0.928. In the isolated TBI group, ML-TRISS had AUROC 0.977, and TRISS had AUROC 0.983. ML-RTS had AUROC 0.790 and RTS had AUROC 0.957. Estimation of ISS and GCS from machine learning based modeling of vital sign features can be utilized to provide accurate assessments of the RTS and TRISS in a population of TBI patients. Automation of these scores could be utilized to enhance triage and resource allocation during the ultra-early phase of resuscitation.
在创伤性脑损伤(TBI)后进行分诊过程中,确定预后非常困难。目前的严重程度测量方法,如创伤和损伤严重程度评分(TRISS)和修订创伤评分(RTS),依赖于格拉斯哥昏迷量表(GCS)和损伤严重程度评分(ISS)的额外信息,这些信息可能不准确或延迟,限制了它们在快速分诊环境中的有用性。我们假设通过对连续生命体征特征进行建模,可以利用基于机器学习的 GCS 和 ISS 估计值来快速得出自动 RTS 和 TRISS。我们从心电图(ECG)、光体积描记法(PPG)和血压中提取变量,使用入院后 15 分钟内获得的连续数据来构建 GCS 和 ISS 的机器学习模型(ML-GCS 和 ML-ISS)。我们比较了使用 ML-ISS 和 ML-GCS 及其使用实际 ISS 和 GCS 值预测院内死亡率的 TRISS 和 RTS。模型在伴有全身损伤的 TBI(头部简略损伤量表(AIS)≥1)和孤立性 TBI(头部 AIS≥1 且其他 AIS≤1)中进行了测试。接收器工作特征曲线下的面积(AUROC)用于评估模型性能。共有 21077 例(2009-2015 年)用于训练集。2016 年至 2017 年的 6057 例用于测试,其中 472 例(7.8%)为严重 TBI(GCS 3-8),223 例(3.7%)为中度 TBI(GCS 9-12),5913 例(88.5%)为轻度 TBI(GCS 13-15)。在伴有全身损伤的 TBI 组中,ML-TRISS 在预测死亡率方面与 TRISS(0.965)具有相似的 AUROC(0.963)。ML-RTS 的 AUROC 为 0.823,RTS 的 AUROC 为 0.928。在孤立性 TBI 组中,ML-TRISS 的 AUROC 为 0.977,TRISS 的 AUROC 为 0.983。ML-RTS 的 AUROC 为 0.790,RTS 的 AUROC 为 0.957。从生命体征特征的基于机器学习的建模中估计 ISS 和 GCS,可以用于对 TBI 患者人群中的 RTS 和 TRISS 进行准确评估。这些评分的自动化可用于在复苏的超早期阶段增强分诊和资源分配。