IEEE/ACM Trans Comput Biol Bioinform. 2024 Sep-Oct;21(5):1348-1357. doi: 10.1109/TCBB.2024.3383438. Epub 2024 Oct 9.
MiRNA has distinct physiological functions at various cellular locations. However, few effective computational methods for predicting the subcellular location of miRNA exist, thereby leaving considerable room for improvement. Accordingly, our study proposes the MGFmiRNAloc simplified molecular input line entry system (SMILES) format as a new approach for predicting the subcellular localization of miRNA. Additionally, the graphical convolutional network (GCN) technique was employed to extract the atomic nodes and topological structure of a single base, thereby constructing RNA sequence molecular map features. Subsequently, the channel attention and spatial attention mechanisms (CBAM) were designed to mine deeper for more efficient information. Finally, the prediction module was used to detect the subcellular localization of miRNA. The 10-fold cross-validation and independent test set experiments demonstrate that MGFmiRNAloc outperforms the most sophisticated methods. The results indicate that the new atomic level feature representation proposed in this study could overcome the limitations of small samples and short miRNA sequences, accurately predict the subcellular localization of miRNAs, and be extended to the subcellular localization of other sequences.
miRNA 在不同的细胞位置具有独特的生理功能。然而,目前用于预测 miRNA 亚细胞定位的有效计算方法很少,因此还有很大的改进空间。有鉴于此,本研究提出了 MGFmiRNAloc 简化分子输入线进入系统(SMILES)格式,作为一种新的 miRNA 亚细胞定位预测方法。此外,我们还采用了图形卷积网络(GCN)技术来提取单个碱基的原子节点和拓扑结构,从而构建 RNA 序列分子图谱特征。然后,设计了通道注意力和空间注意力机制(CBAM)来挖掘更深层次的信息。最后,使用预测模块来检测 miRNA 的亚细胞定位。10 折交叉验证和独立测试集实验表明,MGFmiRNAloc 优于最先进的方法。结果表明,本研究提出的新原子级特征表示方法可以克服小样本和短 miRNA 序列的局限性,准确预测 miRNA 的亚细胞定位,并可扩展到其他序列的亚细胞定位。