Suppr超能文献

GCNPCA:基于图卷积神经网络的miRNA-疾病关联预测算法

GCNPCA: miRNA-Disease Associations Prediction Algorithm Based on Graph Convolutional Neural Networks.

作者信息

Liu Jiwen, Kuang Zhufang, Deng Lei

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2023 Mar-Apr;20(2):1041-1052. doi: 10.1109/TCBB.2022.3203564. Epub 2023 Apr 3.

Abstract

A growing number of studies have confirmed the important role of microRNAs (miRNAs) in human diseases and the aberrant expression of miRNAs affects the onset and progression of human diseases. The discovery of disease-associated miRNAs as new biomarkers promote the progress of disease pathology and clinical medicine. However, only a small proportion of miRNA-disease correlations have been validated by biological experiments. And identifying miRNA-disease associations through biological experiments is both expensive and inefficient. Therefore, it is important to develop efficient and highly accurate computational methods to predict miRNA-disease associations. A miRNA-disease associations prediction algorithm based on Graph Convolutional neural Networks and Principal Component Analysis (GCNPCA) is proposed in this paper. Specifically, the deep topological structure information is extracted from the heterogeneous network composed of miRNA and disease nodes by a Graph Convolutional neural Network (GCN) with an additional attention mechanism. The internal attribute information of the nodes is obtained by the Principal Component Analysis (PCA). Then, the topological structure information and the node attribute information are combined to construct comprehensive feature descriptors. Finally, the Random Forest (RF) is used to train and classify these feature descriptors. In the five-fold cross-validation experiment, the AUC and AUPR for the GCNPCA algorithm are 0.983 and 0.988 respectively.

摘要

越来越多的研究证实了微小RNA(miRNA)在人类疾病中的重要作用,并且miRNA的异常表达会影响人类疾病的发生和发展。作为新的生物标志物,与疾病相关的miRNA的发现推动了疾病病理学和临床医学的进步。然而,只有一小部分miRNA与疾病的相关性已通过生物学实验得到验证。而且,通过生物学实验识别miRNA与疾病的关联既昂贵又低效。因此,开发高效且高度准确的计算方法来预测miRNA与疾病的关联非常重要。本文提出了一种基于图卷积神经网络和主成分分析(GCNPCA)的miRNA与疾病关联预测算法。具体而言,通过具有附加注意力机制的图卷积神经网络(GCN)从由miRNA和疾病节点组成的异质网络中提取深度拓扑结构信息。通过主成分分析(PCA)获得节点的内部属性信息。然后,将拓扑结构信息和节点属性信息相结合,构建综合特征描述符。最后,使用随机森林(RF)对这些特征描述符进行训练和分类。在五折交叉验证实验中,GCNPCA算法的AUC和AUPR分别为0.983和0.988。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验