Wang Yingqian, Liang Zhengyu, Wang Longguang, Yang Jungang, An Wei, Guo Yulan
IEEE Trans Neural Netw Learn Syst. 2025 Mar;36(3):5559-5573. doi: 10.1109/TNNLS.2024.3378420. Epub 2025 Feb 28.
Recent years have witnessed the great advances of deep neural networks (DNNs) in light field (LF) image super-resolution (SR). However, existing DNN-based LF image SR methods are developed on a single fixed degradation (e.g., bicubic downsampling), and thus cannot be applied to super-resolve real LF images with diverse degradation. In this article, we propose a simple yet effective method for real-world LF image SR. In our method, a practical LF degradation model is developed to formulate the degradation process of real LF images. Then, a convolutional neural network is designed to incorporate the degradation prior into the SR process. By training on LF images using our formulated degradation, our network can learn to modulate different degradation while incorporating both spatial and angular information in LF images. Extensive experiments on both synthetically degraded and real-world LF images demonstrate the effectiveness of our method. Compared with existing state-of-the-art single and LF image SR methods, our method achieves superior SR performance under a wide range of degradation, and generalizes better to real LF images. Codes and models are available at https://yingqianwang.github.io/LF-DMnet/.
近年来,深度神经网络(DNN)在光场(LF)图像超分辨率(SR)方面取得了巨大进展。然而,现有的基于DNN的LF图像SR方法是在单一固定退化(例如双三次下采样)的基础上开发的,因此不能应用于对具有多种退化的真实LF图像进行超分辨率处理。在本文中,我们提出了一种简单而有效的方法来处理真实世界的LF图像SR。在我们的方法中,开发了一个实用的LF退化模型来描述真实LF图像的退化过程。然后,设计了一个卷积神经网络,将退化先验纳入SR过程。通过使用我们制定的退化对LF图像进行训练,我们的网络可以在结合LF图像中的空间和角度信息的同时,学习调节不同的退化。对合成退化和真实世界LF图像进行的大量实验证明了我们方法的有效性。与现有的单幅和LF图像SR方法相比,我们的方法在广泛的退化条件下实现了卓越的SR性能,并且对真实LF图像具有更好的泛化能力。代码和模型可在https://yingqianwang.github.io/LF-DMnet/获取。