Suppr超能文献

面向真实世界热成像超分辨率的频率感知退化建模

Frequency-Aware Degradation Modeling for Real-World Thermal Image Super-Resolution.

作者信息

Qu Chao, Chen Xiaoyu, Xu Qihan, Han Jing

机构信息

Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing University of Science and Technology, Nanjing 210094, China.

出版信息

Entropy (Basel). 2024 Feb 27;26(3):209. doi: 10.3390/e26030209.

Abstract

The supervised super-resolution (SR) methods based on simple degradation assumptions (e.g., bicubic downsampling) have unsatisfactory generalization ability on real-world thermal images. To enhance the SR effect of real-world sceneries, we introduce an unsupervised SR framework for thermal images, incorporating degradation modeling and corresponding SR. Inspired by the physical prior that high frequency affects details and low frequency affects thermal contrast, we propose a frequency-aware degradation model, named TFADGAN. The model achieves image quality migration between thermal detectors of different resolutions by degrading different frequency components of the image from high-resolution (HR) to low-resolution (LR). Specifically, by adversarial learning with unpaired LR thermal images, the complex degradation processes of HR thermal images at low and high frequencies are modeled separately. Benefiting from the thermal characteristics mined from real-world images, the degraded images generated by TFADGAN are similar to LR thermal ones in terms of detail and contrast. Then, the SR model is trained based on the pseudo-paired data consisting of degraded images and HR images. Extensive experimental results demonstrate that the degraded images generated by TFADGAN provide reliable alternatives to real-world LR thermal images. In real-world thermal image experiments, the proposed SR framework can improve the peak signal-to-noise ratio (PSNR) and structural similarity degree (SSIM) by 1.28 dB and 0.02, respectively.

摘要

基于简单退化假设(如双三次下采样)的有监督超分辨率(SR)方法在真实世界热图像上的泛化能力并不理想。为了增强真实世界场景的超分辨率效果,我们引入了一种用于热图像的无监督超分辨率框架,该框架结合了退化建模和相应的超分辨率方法。受高频影响细节、低频影响热对比度这一物理先验知识的启发,我们提出了一种频率感知退化模型,名为TFADGAN。该模型通过对图像从高分辨率(HR)到低分辨率(LR)的不同频率分量进行退化,实现了不同分辨率热探测器之间的图像质量迁移。具体而言,通过与未配对的低分辨率热图像进行对抗学习,分别对高分辨率热图像在低频和高频的复杂退化过程进行建模。受益于从真实世界图像中挖掘出的热特性,TFADGAN生成的退化图像在细节和对比度方面与低分辨率热图像相似。然后,基于由退化图像和高分辨率图像组成的伪配对数据训练超分辨率模型。大量实验结果表明,TFADGAN生成的退化图像为真实世界的低分辨率热图像提供了可靠的替代方案。在真实世界热图像实验中,所提出的超分辨率框架可分别将峰值信噪比(PSNR)和结构相似性程度(SSIM)提高1.28 dB和0.02。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2a2/10968975/0e9c1b9c5836/entropy-26-00209-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验