Pradeep Aishwarya, Raghavan Sheelakumari, Przybelski Scott A, Preboske Gregory, Schwarz Christopher G, Lowe Val J, Knopman David S, Petersen Ronald C, Jack Clifford R, Graff-Radford Jonathan, Cogswell Petrice M, Vemuri Prashanthi
Mayo Clinic Alix School of Medicine.
Mayo Clinic.
Res Sq. 2024 Mar 11:rs.3.rs-4017874. doi: 10.21203/rs.3.rs-4017874/v1.
White matter hyperintensities (WMH) are considered hallmark features of cerebral small vessel disease and have recently been linked to Alzheimer's disease pathology. Their distinct spatial distributions, namely periventricular versus deep WMH, may differ by underlying age-related and pathobiological processes contributing to cognitive decline. We aimed to identify the spatial patterns of WMH using the 4-scale Fazekas visual assessment and explore their differential association with age, vascular health, Alzheimer's imaging markers, namely amyloid and tau burden, and cognition. Because our study consisted of scans from GE and Siemens scanners with different resolutions, we also investigated inter-scanner reproducibility and combinability of WMH measurements on imaging.
We identified 1144 participants from the Mayo Clinic Study of Aging consisting of older adults from Olmsted County, Minnesota with available structural magnetic resonance imaging (MRI), amyloid, and tau positron emission tomography (PET). WMH distribution patterns were assessed on FLAIR-MRI, both 2D axial and 3D, using Fazekas ratings of periventricular and deep WMH severity. We compared the association of periventricular and deep WMH scales with vascular risk factors, amyloid-PET and tau-PET standardized uptake value ratio, WMH volume, and cognition using Pearson partial correlation after adjusting for age. We also evaluated vendor compatibility and reproducibility of the Fazekas scales using intraclass correlations (ICC).
Periventricular and deep WMH measurements showed similar correlations with age, cardiometabolic conditions score (vascular risk), and cognition, (p < 0.001). Both periventricular WMH and deep WMH showed weak associations with amyloidosis (R = 0.07, p = < 0.001), and none with tau burden. We found substantial agreement between data from the two scanners for Fazekas measurements (ICC = 0.78). The automated WMH volume had high discriminating power for identifying participants with Fazekas ≥ 2 (area under curve = 0.97).
Our study investigates risk factors underlying WMH spatial patterns and their impact on global cognition, with no discernible differences between periventricular and deep WMH. We observed minimal impact of amyloidosis on WMH severity. These findings, coupled with enhanced inter-scanner reproducibility of WMH data, suggest the combinability of inter-scanner data assessed by harmonized protocols in the context of vascular contributions to cognitive impairment and dementia biomarker research.
脑白质高信号(WMH)被认为是脑小血管病的标志性特征,最近还与阿尔茨海默病病理相关。它们独特的空间分布,即脑室周围与深部WMH,可能因导致认知衰退的潜在年龄相关和病理生物学过程而异。我们旨在使用4级Fazekas视觉评估法确定WMH的空间模式,并探讨它们与年龄、血管健康、阿尔茨海默病成像标志物(即淀粉样蛋白和tau蛋白负荷)以及认知的差异关联。由于我们的研究包括来自GE和西门子扫描仪的不同分辨率的扫描,我们还研究了成像上WMH测量的扫描仪间再现性和可组合性。
我们从梅奥诊所衰老研究中确定了1144名参与者,他们来自明尼苏达州奥尔姆斯特德县的老年人,有可用的结构磁共振成像(MRI)、淀粉样蛋白和tau正电子发射断层扫描(PET)。使用Fazekas对脑室周围和深部WMH严重程度的评分,在2D轴位和3D的液体衰减反转恢复序列MRI上评估WMH分布模式。在调整年龄后,我们使用Pearson偏相关比较脑室周围和深部WMH量表与血管危险因素、淀粉样蛋白PET和tau蛋白PET标准化摄取值比率、WMH体积和认知的关联。我们还使用组内相关系数(ICC)评估Fazekas量表的设备兼容性和再现性。
脑室周围和深部WMH测量与年龄、心脏代谢状况评分(血管风险)和认知显示出相似的相关性(p < 0.001)。脑室周围WMH和深部WMH与淀粉样变性均显示出弱关联(R = 0.07,p = < 0.001),与tau蛋白负荷均无关联。我们发现两台扫描仪的数据在Fazekas测量方面有高度一致性(ICC = 0.78)。自动WMH体积对识别Fazekas≥2的参与者具有高鉴别力(曲线下面积 = 0.97)。
我们的研究调查了WMH空间模式的潜在危险因素及其对整体认知的影响,脑室周围和深部WMH之间没有明显差异。我们观察到淀粉样变性对WMH严重程度的影响最小。这些发现,再加上WMH数据增强的扫描仪间再现性,表明在血管对认知障碍和痴呆生物标志物研究的贡献背景下,通过统一方案评估的扫描仪间数据具有可组合性。