Chao Cara W, Sprouse Kaitlin R, Miranda Marcos C, Catanzaro Nicholas J, Hubbard Miranda L, Addetia Amin, Stewart Cameron, Brown Jack T, Dosey Annie, Valdez Adian, Ravichandran Rashmi, Hendricks Grace G, Ahlrichs Maggie, Dobbins Craig, Hand Alexis, Treichel Catherine, Willoughby Isabelle, Walls Alexandra C, McGuire Andrew T, Leaf Elizabeth M, Baric Ralph S, Schäfer Alexandra, Veesler David, King Neil P
Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
bioRxiv. 2024 Mar 14:2024.03.13.584735. doi: 10.1101/2024.03.13.584735.
Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic betacoronavirus that causes severe and often lethal respiratory illness in humans. The MERS-CoV spike (S) protein is the viral fusogen and the target of neutralizing antibodies, and has therefore been the focus of vaccine design efforts. Currently there are no licensed vaccines against MERS-CoV and only a few candidates have advanced to Phase I clinical trials. Here we developed MERS-CoV vaccines utilizing a computationally designed protein nanoparticle platform that has generated safe and immunogenic vaccines against various enveloped viruses, including a licensed vaccine for SARS-CoV-2. Two-component protein nanoparticles displaying MERS-CoV S-derived antigens induced robust neutralizing antibody responses and protected mice against challenge with mouse-adapted MERS-CoV. Electron microscopy polyclonal epitope mapping and serum competition assays revealed the specificities of the dominant antibody responses elicited by immunogens displaying the prefusion-stabilized S-2P trimer, receptor binding domain (RBD), or N-terminal domain (NTD). An RBD nanoparticle vaccine elicited antibodies targeting multiple non-overlapping epitopes in the RBD, whereas anti-NTD antibodies elicited by the S-2P- and NTD-based immunogens converged on a single antigenic site. Our findings demonstrate the potential of two-component nanoparticle vaccine candidates for MERS-CoV and suggest that this platform technology could be broadly applicable to betacoronavirus vaccine development.
中东呼吸综合征冠状病毒(MERS-CoV)是一种人畜共患的β冠状病毒,可导致人类严重且往往致命的呼吸道疾病。MERS-CoV刺突(S)蛋白是病毒融合蛋白,也是中和抗体的靶点,因此一直是疫苗设计工作的重点。目前尚无针对MERS-CoV的获批疫苗,只有少数候选疫苗进入了I期临床试验。在此,我们利用一种通过计算设计的蛋白质纳米颗粒平台开发了MERS-CoV疫苗,该平台已研发出针对多种包膜病毒的安全且具有免疫原性的疫苗,包括一种针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的获批疫苗。展示源自MERS-CoV S的抗原的双组分蛋白质纳米颗粒诱导了强大的中和抗体反应,并保护小鼠免受适应小鼠的MERS-CoV攻击。电子显微镜多克隆表位图谱分析和血清竞争试验揭示了由展示预融合稳定化S-2P三聚体、受体结合域(RBD)或N端结构域(NTD)的免疫原引发的主要抗体反应的特异性。一种RBD纳米颗粒疫苗引发了靶向RBD中多个不重叠表位的抗体,而由基于S-2P和NTD的免疫原引发的抗NTD抗体则集中在单个抗原位点。我们的研究结果证明了双组分纳米颗粒候选疫苗用于MERS-CoV的潜力,并表明该平台技术可能广泛适用于β冠状病毒疫苗的开发。