Charalampidou Anna, Nehls Thomas, Meyners Christian, Gandhesiri Satish, Pomplun Sebastian, Pentelute Bradley L, Lermyte Frederik, Hausch Felix
Clemens-Schöpf-Institute, Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
ACS Cent Sci. 2024 Feb 28;10(3):649-657. doi: 10.1021/acscentsci.3c01283. eCollection 2024 Mar 27.
Engineering at the amino acid level is key to enhancing the properties of existing proteins in a desired manner. So far, protein engineering has been dominated by genetic approaches, which have been extremely powerful but only allow for minimal variations beyond the canonical amino acids. Chemical peptide synthesis allows the unrestricted incorporation of a vast set of unnatural amino acids with much broader functionalities, including the incorporation of post-translational modifications or labels. Here we demonstrate the potential of chemical synthesis to generate proteins in a specific conformation, which would have been unattainable by recombinant protein expression. We use recently established rapid automated flow peptide synthesis combined with solid-phase late-stage modifications to rapidly generate a set of FK506-binding protein 51 constructs bearing defined intramolecular lactam bridges. This trapped an otherwise rarely populated transient pocket-as confirmed by crystal structures-which led to an up to 39-fold improved binding affinity for conformation-selective ligands and represents a unique system for the development of ligands for this rare conformation. Overall, our results show how rapid automated flow peptide synthesis can be applied to precision protein engineering.
在氨基酸水平上进行工程改造是按预期方式增强现有蛋白质特性的关键。到目前为止,蛋白质工程一直由基因方法主导,这些方法非常强大,但只允许在标准氨基酸之外进行最小程度的变异。化学肽合成允许无限制地掺入大量具有更广泛功能的非天然氨基酸,包括掺入翻译后修饰或标签。在此,我们展示了化学合成在生成特定构象蛋白质方面的潜力,这是重组蛋白表达无法实现的。我们使用最近建立的快速自动化流动肽合成技术并结合固相后期修饰,快速生成了一组带有确定分子内酰胺桥的FK506结合蛋白51构建体。晶体结构证实,这捕获了一个原本很少出现的瞬态口袋,这导致对构象选择性配体的结合亲和力提高了39倍,并且代表了开发针对这种罕见构象的配体的独特系统。总体而言,我们的结果表明快速自动化流动肽合成可如何应用于精确蛋白质工程。