Chen Tianyang, Banda Harish, Wang Jiande, Oppenheim Julius J, Franceschi Alessandro, Dincǎ Mircea
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Department of Industrial Engineering, University of Bologna, Bologna 40136, Italy.
ACS Cent Sci. 2024 Jan 18;10(3):569-578. doi: 10.1021/acscentsci.3c01478. eCollection 2024 Mar 27.
Eliminating the use of critical metals in cathode materials can accelerate global adoption of rechargeable lithium-ion batteries. Organic cathode materials, derived entirely from earth-abundant elements, are in principle ideal alternatives but have not yet challenged inorganic cathodes due to poor conductivity, low practical storage capacity, or poor cyclability. Here, we describe a layered organic electrode material whose high electrical conductivity, high storage capacity, and complete insolubility enable reversible intercalation of Li ions, allowing it to compete at the electrode level, in all relevant metrics, with inorganic-based lithium-ion battery cathodes. Our optimized cathode stores 306 mAh g, delivers an energy density of 765 Wh kg, higher than most cobalt-based cathodes, and can charge-discharge in as little as 6 min. These results demonstrate the operational competitiveness of sustainable organic electrode materials in practical batteries.
消除阴极材料中关键金属的使用可以加速全球对可充电锂离子电池的采用。完全由地球上储量丰富的元素制成的有机阴极材料原则上是理想的替代品,但由于导电性差、实际存储容量低或循环性能差,尚未对无机阴极构成挑战。在此,我们描述了一种层状有机电极材料,其高电导率、高存储容量和完全不溶性使得锂离子能够可逆嵌入,从而使其在所有相关指标上在电极层面与无机基锂离子电池阴极相竞争。我们优化后的阴极存储容量为306 mAh/g,能量密度为765 Wh/kg,高于大多数钴基阴极,并且能够在短短6分钟内完成充放电。这些结果证明了可持续有机电极材料在实际电池中的运行竞争力。