Goracci Guido, Ogundiran Mary B, Barzegar Mohamad, Iturrospe Amaia, Arbe Arantxa, Dolado Jorge S
CSIC-UPV/EHU, Centro de Física de Materiales, P. Manuel de Lardizábal 5, 20018San Sebastián, Spain.
Analytical/Environmental Unit, Department of Chemistry, Faculty of Science, University of Ibadan, Ibadan200132,Nigeria.
ACS Omega. 2024 Mar 11;9(12):13728-13737. doi: 10.1021/acsomega.3c08257. eCollection 2024 Mar 26.
Geopolymers, a class of sustainable inorganic materials derived from natural and recycled resources, hold promise for various applications, including thermoelectric power generation. This study delves into the thermoelectric properties of Ikere white (IKW)-geopolymer, derived from kaolin clay, by employing rigorous measurements of thermal conductivity, electrical conductivity, and Seebeck coefficient. The investigation elucidates the pivotal role of temperature and ions in shaping the thermoelectric performance of IKW-geopolymer. Electrical conductivity analysis pinpoints ions within the geopolymer's channels as primary contributors. Beyond a critical temperature, the evaporation of bulk water triggers a transition of charge carriers from one- to three-dimensional motion, resulting in reduced conductivity. The Seebeck coefficient exhibits a range from -182 to 42 μV/K, with its time-dependent profile suggesting that ions potentially drive thermoelectricity in cementitious materials. Notably, a unique transition from n-type to p-type behavior was observed in the geopolymer, opening new avenues for ionic thermoelectric capacitors. These insights advance our understanding of thermoelectric behavior in geopolymers and have the potential to propel the development of novel building materials for energy conversion applications.
地质聚合物是一类源自天然和回收资源的可持续无机材料,在包括热电发电在内的各种应用中具有潜力。本研究通过对热导率、电导率和塞贝克系数进行严格测量,深入探究了由高岭土制成的伊凯雷白(IKW)地质聚合物的热电性能。该研究阐明了温度和离子在塑造IKW地质聚合物热电性能方面的关键作用。电导率分析指出地质聚合物通道内的离子是主要贡献者。超过临界温度后,大量水分的蒸发会引发电荷载流子从一维运动向三维运动的转变,导致电导率降低。塞贝克系数在-182至42 μV/K范围内,其随时间变化的曲线表明离子可能在胶凝材料中驱动热电效应。值得注意的是,在地质聚合物中观察到了从n型到p型行为的独特转变,为离子热电电容器开辟了新途径。这些见解增进了我们对地质聚合物热电行为的理解,并有可能推动用于能量转换应用的新型建筑材料的开发。