Suppr超能文献

使用特征子集优化预测比特币股价。

Prediction of bitcoin stock price using feature subset optimization.

作者信息

Singh Saurabh, Pise Anil, Yoon Byungun

机构信息

Department of Ai and big data, Woosong University, Daejeon, south korea.

School of Computer Science and Applied Mathematics, University of Witwatersrand, Johannesburg, South Africa.

出版信息

Heliyon. 2024 Mar 19;10(7):e28415. doi: 10.1016/j.heliyon.2024.e28415. eCollection 2024 Apr 15.

Abstract

In light of recent cryptocurrency value fluctuations, Bitcoin is gradually gaining recognition as an investment vehicle. Given the market's inherent volatility, accurate forecasting becomes crucial for making informed investment decisions. Notably, previous research has utilized machine learning methods to enhance the accuracy of Bitcoin price predictions. However, few studies have explored the potential of employing diverse modeling methods for sampling with varying data formats and dimensional characteristics. This study aims to identify the internal feature subset that yields the highest returns in forecasting Bitcoin's price. Specifically, Bitcoin's internal features were categorized into four groups: currency data, block details, mining information, and network difficulty. Subsequently, a long short-term memory (LSTM) artificial neural network was employed to predict the next day's Bitcoin closing price, utilizing various categorizations of feature subsets. The model underwent training using two and a half years of historical data for each feature. The findings revealed a mean absolute error rate of 6.38% when modeling with the block details category features. This enhanced performance primarily stemmed from the positive relationship between Bitcoin price and this data subset's low ambiguity. Experimental results underscored that, compared to other investigated feature subsets, the categorization of block detail features provided the most accurate Bitcoin price predictions, laying the foundation for future research in this domain.

摘要

鉴于近期加密货币价值波动,比特币正逐渐被认可为一种投资工具。考虑到市场固有的波动性,准确预测对于做出明智的投资决策至关重要。值得注意的是,先前的研究已利用机器学习方法来提高比特币价格预测的准确性。然而,很少有研究探讨采用不同建模方法对具有不同数据格式和维度特征的数据进行采样的潜力。本研究旨在确定在预测比特币价格时能产生最高回报的内部特征子集。具体而言,比特币的内部特征被分为四组:货币数据、区块细节、挖矿信息和网络难度。随后,使用长短期记忆(LSTM)人工神经网络,利用特征子集的各种分类来预测次日比特币收盘价。该模型使用每个特征的两年半历史数据进行训练。研究结果显示,使用区块细节类别特征进行建模时,平均绝对误差率为6.38%。这种性能提升主要源于比特币价格与该数据子集的低模糊性之间的正相关关系。实验结果强调,与其他研究的特征子集相比,区块细节特征的分类提供了最准确的比特币价格预测,为该领域的未来研究奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a119/10981097/84326d895deb/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验