Suppr超能文献

窄带隙YMoO₄中的高效上转换发光

Highly efficient upconversion luminescence in narrow-bandgap YMoO.

作者信息

You Wenwu, Zhang Xiaomin, Yu Ruoxi, Chen Chao, Li Mingxing, Pan Gencai, Mao Yanli

出版信息

Opt Lett. 2024 Apr 1;49(7):1824-1827. doi: 10.1364/OL.519702.

Abstract

Lanthanide-doped upconversion (UC) materials have been extensively investigated for their unique capability to convert low-energy excitation into high-energy emission. Contrary to previous reports suggesting that efficient UC luminescence (UCL) is exclusively observed in materials with a wide bandgap, we have discovered in this study that YMoO:Yb/Tm microcrystals, a narrowband material, exhibit highly efficient UC emission. Remarkably, these microcrystals do not display any four- or five-photon UC emission bands. This particular optical phenomenon is independent of the variation in doping ion concentration, temperature, phonon energy, and excitation power density. Combining theoretical calculations and experimental results, we attribute the vanishing emission bands to the strong interaction between the bandgap of the YMoO host matrix (3.37 eV) and the high-energy levels (I and D) of Tm ions. This interaction can effectively catalyze the UC emission process of Tm ions, which leads to YMoO:Yb/Tm microcrystals possessing very strong UCL intensity. The brightness of these microcrystals outshines commercial UC NaYF:Yb,Er green phosphors by a factor of 10 and is 1.4 times greater than that of UC NaYF:Yb,Tm blue phosphors. Ultimately, YMoO:Yb/Tm microcrystals, with their distinctive optical characteristics, are being tailored for sophisticated anti-counterfeiting and information encryption applications.

摘要

镧系掺杂的上转换(UC)材料因其将低能量激发转换为高能量发射的独特能力而受到广泛研究。与之前报道表明高效的UC发光(UCL)仅在宽带隙材料中观察到相反,我们在本研究中发现,窄带材料YMoO:Yb/Tm微晶表现出高效的UC发射。值得注意的是,这些微晶没有显示出任何四光子或五光子UC发射带。这种特殊的光学现象与掺杂离子浓度、温度、声子能量和激发功率密度的变化无关。结合理论计算和实验结果,我们将发射带的消失归因于YMoO主体基质的带隙(3.37 eV)与Tm离子的高能级(I和D)之间的强相互作用。这种相互作用可以有效地催化Tm离子的UC发射过程,这导致YMoO:Yb/Tm微晶具有非常强的UCL强度。这些微晶的亮度比商用UC NaYF:Yb,Er绿色磷光体亮10倍,比UC NaYF:Yb,Tm蓝色磷光体亮1.4倍。最终,具有独特光学特性的YMoO:Yb/Tm微晶正被定制用于复杂的防伪和信息加密应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验