Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom.
Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom.
Anal Chem. 2024 Apr 16;96(15):5869-5877. doi: 10.1021/acs.analchem.3c05753. Epub 2024 Apr 1.
Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) has emerged as a powerful tool to probe protein dynamics. As a bottom-up technique, HDX-MS provides information at peptide-level resolution, allowing structural localization of dynamic changes. Consequently, the HDX-MS data quality is largely determined by the number of peptides that are identified and monitored after deuteration. Integration of ion mobility (IM) into HDX-MS workflows has been shown to increase the data quality by providing an orthogonal mode of peptide ion separation in the gas phase. This is of critical importance for challenging targets such as integral membrane proteins (IMPs), which often suffer from low sequence coverage or redundancy in HDX-MS analyses. The increasing complexity of samples being investigated by HDX-MS, such as membrane mimetic reconstituted and IMPs, has generated need for instrumentation with greater resolving power. Recently, Giles et al. developed cyclic ion mobility (cIM), an IM device with racetrack geometry that enables scalable, multipass IM separations. Using one-pass and multipass cIM routines, we use the recently commercialized SELECT SERIES Cyclic IM spectrometer for HDX-MS analyses of four detergent solubilized IMP samples and report its enhanced performance. Furthermore, we develop a novel processing strategy capable of better handling multipass cIM data. Interestingly, use of one-pass and multipass cIM routines produced unique peptide populations, with their combined peptide output being 31 to 222% higher than previous generation SYNAPT G2-Si instrumentation. Thus, we propose a novel HDX-MS workflow with integrated cIM that has the potential to enable the analysis of more complex systems with greater accuracy and speed.
氢/氘交换-质谱(HDX-MS)已成为探测蛋白质动力学的有力工具。作为一种自上而下的技术,HDX-MS 提供了肽级分辨率的信息,允许对动态变化进行结构定位。因此,HDX-MS 数据质量在很大程度上取决于氘化后鉴定和监测的肽数量。将离子淌度(IM)集成到 HDX-MS 工作流程中,通过在气相中提供肽离子分离的正交模式,可以提高数据质量。这对于具有挑战性的目标(如整膜蛋白(IMP))非常重要,IMP 在 HDX-MS 分析中经常存在低序列覆盖率或冗余的问题。越来越复杂的样品被 HDX-MS 所研究,例如膜模拟重建和 IMPs,这就需要具有更高分辨率的仪器。最近,Giles 等人开发了循环离子淌度(cIM),这是一种具有赛道几何形状的 IM 设备,可实现可扩展的多通道 IM 分离。我们使用最近商业化的 SELECT SERIES Cyclic IM 光谱仪对四个去污剂溶解的 IMP 样品进行 HDX-MS 分析,并报告了其增强的性能。此外,我们开发了一种新的处理策略,能够更好地处理多通道 cIM 数据。有趣的是,使用单通道和多通道 cIM 程序会产生独特的肽群体,它们的组合肽输出比上一代 SYNAPT G2-Si 仪器高 31%至 222%。因此,我们提出了一种具有集成 cIM 的新型 HDX-MS 工作流程,它有可能以更高的准确性和速度分析更复杂的系统。