Department of Chemistry and Chemical Biology, Northeastern University, Mailstop 412 TF, 360 Huntington Avenue, Boston, MA 02115, United States.
Department of Chemistry and Chemical Biology, Northeastern University, Mailstop 412 TF, 360 Huntington Avenue, Boston, MA 02115, United States.
J Chromatogr A. 2023 Jan 25;1689:463742. doi: 10.1016/j.chroma.2022.463742. Epub 2022 Dec 23.
Reversed-phase peptide separation in hydrogen deuterium exchange (HDX) mass spectrometry (MS) must be done with conditions where the back exchange is the slowest possible, the so-called quench conditions of low pH and low temperature. To retain maximum deuterium, separation must also be done as quickly as possible. The low temperature (0 °C) of quench conditions complicates the separation and leads primarily to a reduction in separation quality and an increase in chromatographic backpressure. To improve the separation in HDX MS, one could use a longer gradient, smaller particles, a different separation mechanism (for example, capillary electrophoresis), or multi-dimensional separations such as combining ion mobility separation with reversed-phase separation. Another way to improve separations under HDX MS quench conditions is to use a higher flow rate where separation efficiency at 0 °C is more ideal. Higher flow rates, however, require chromatographic systems (both pumps and fittings) with higher backpressure limits. We tested what improvements could be realized with a commercial UPLC/UHPLC system capable of ∼20,000 psi backpressure. We found that a maximum flow rate of 225 µL/min (using a 1 × 50 mm column packed with 1.8 µm particles) was possible and that higher flow rate clearly led to higher peak capacity. HDX MS analysis of both simple and particularly complex samples improved, permitting both shorter separation time, if desired, and providing more deuterium recovery.
在氢氘交换(HDX)质谱(MS)中进行反相肽分离时,必须在最慢的反向交换条件下进行,即所谓的低 pH 和低温淬灭条件。为了保留最大量的氘,分离也必须尽快进行。淬灭条件的低温(0°C)使分离复杂化,主要导致分离质量下降和色谱背压增加。为了提高 HDX MS 中的分离度,可以使用更长的梯度、更小的颗粒、不同的分离机制(例如毛细管电泳),或多维分离,如将离子淌度分离与反相分离相结合。在 HDX MS 淬灭条件下改善分离的另一种方法是使用更高的流速,在 0°C 下分离效率更理想。然而,更高的流速需要具有更高背压限制的色谱系统(包括泵和配件)。我们测试了一种商业超高效液相色谱/超高液相色谱系统(能够达到约 20,000 psi 的背压)可以实现哪些改进。我们发现,使用填充有 1.8 µm 颗粒的 1×50mm 柱,最大流速为 225 µL/min 是可行的,并且更高的流速显然会导致更高的峰容量。对简单和特别复杂的样品进行的 HDX MS 分析得到了改善,允许在需要时缩短分离时间,并提供更多的氘回收。