文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于转录组学的海葵肽毒素在不同组织中的多样性分析。

Diversity analysis of sea anemone peptide toxins in different tissues of Heteractis crispa based on transcriptomics.

机构信息

Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China.

Department of Pharmacy, 928th Hospital of PLA Joint Logistics Support Force, Haikou, China.

出版信息

Sci Rep. 2024 Apr 1;14(1):7684. doi: 10.1038/s41598-024-58402-2.


DOI:10.1038/s41598-024-58402-2
PMID:38561372
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10985097/
Abstract

Peptide toxins found in sea anemones venom have diverse properties that make them important research subjects in the fields of pharmacology, neuroscience and biotechnology. This study used high-throughput sequencing technology to systematically analyze the venom components of the tentacles, column, and mesenterial filaments of sea anemone Heteractis crispa, revealing the diversity and complexity of sea anemone toxins in different tissues. A total of 1049 transcripts were identified and categorized into 60 families, of which 91.0% were proteins and 9.0% were peptides. Of those 1049 transcripts, 416, 291, and 307 putative proteins and peptide precursors were identified from tentacles, column, and mesenterial filaments respectively, while 428 were identified when the datasets were combined. Of these putative toxin sequences, 42 were detected in all three tissues, including 33 proteins and 9 peptides, with the majority of peptides being ShKT domain, β-defensin, and Kunitz-type. In addition, this study applied bioinformatics approaches to predict the family classification, 3D structures, and functional annotation of these representative peptides, as well as the evolutionary relationships between peptides, laying the foundation for the next step of peptide pharmacological activity research.

摘要

在海葵毒液中发现的肽毒素具有多种特性,使其成为药理学、神经科学和生物技术领域的重要研究课题。本研究使用高通量测序技术系统分析了海葵 Heteractis crispa 触须、柱和系膜丝的毒液成分,揭示了不同组织中海葵毒素的多样性和复杂性。共鉴定出 1049 个转录本,并将其分为 60 个家族,其中 91.0%为蛋白质,9.0%为肽。在这 1049 个转录本中,分别从触须、柱和系膜丝中鉴定出 416、291 和 307 个假定的蛋白质和肽前体,而当将数据集合并时,共鉴定出 428 个。在这些假定的毒素序列中,有 42 个在所有三种组织中均有检测到,包括 33 个蛋白质和 9 个肽,其中大多数肽为 ShKT 结构域、β-防御素和 Kunitz 型。此外,本研究还应用生物信息学方法预测了这些代表性肽的家族分类、3D 结构和功能注释,以及肽之间的进化关系,为下一步的肽药理学活性研究奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e7/10985097/4a0544b24d37/41598_2024_58402_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e7/10985097/fef2a85989fc/41598_2024_58402_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e7/10985097/19141fd65747/41598_2024_58402_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e7/10985097/b050b2c4c183/41598_2024_58402_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e7/10985097/4ee1398d0546/41598_2024_58402_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e7/10985097/ecd310267e55/41598_2024_58402_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e7/10985097/d64eb9e84ca4/41598_2024_58402_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e7/10985097/eed47c7a8b13/41598_2024_58402_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e7/10985097/65c7d64f057d/41598_2024_58402_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e7/10985097/4a0544b24d37/41598_2024_58402_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e7/10985097/fef2a85989fc/41598_2024_58402_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e7/10985097/19141fd65747/41598_2024_58402_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e7/10985097/b050b2c4c183/41598_2024_58402_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e7/10985097/4ee1398d0546/41598_2024_58402_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e7/10985097/ecd310267e55/41598_2024_58402_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e7/10985097/d64eb9e84ca4/41598_2024_58402_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e7/10985097/eed47c7a8b13/41598_2024_58402_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e7/10985097/65c7d64f057d/41598_2024_58402_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e7/10985097/4a0544b24d37/41598_2024_58402_Fig9_HTML.jpg

相似文献

[1]
Diversity analysis of sea anemone peptide toxins in different tissues of Heteractis crispa based on transcriptomics.

Sci Rep. 2024-4-1

[2]
Venomics Reveals the Venom Complexity of Sea Anemone .

Mar Drugs. 2024-1-28

[3]
Revisiting venom of the sea anemone Stichodactyla haddoni: Omics techniques reveal the complete toxin arsenal of a well-studied sea anemone genus.

J Proteomics. 2017-7-21

[4]
Kunitz-Type Peptide HCRG21 from the Sea Anemone Heteractis crispa Is a Full Antagonist of the TRPV1 Receptor.

Mar Drugs. 2016-12-15

[5]
Multigene Family of Pore-Forming Toxins from Sea Anemone .

Mar Drugs. 2018-5-24

[6]
New Insights into the Type II Toxins from the Sea Anemone .

Toxins (Basel). 2020-1-10

[7]
A new multigene superfamily of Kunitz-type protease inhibitors from sea anemone Heteractis crispa.

Peptides. 2011-10-5

[8]
A Tale of Toxin Promiscuity: The Versatile Pharmacological Effects of Hcr 1b-2 Sea Anemone Peptide on Voltage-Gated Ion Channels.

Mar Drugs. 2022-2-17

[9]
Never, Ever Make an Enemy… Out of an Anemone: Transcriptomic Comparison of Clownfish Hosting Sea Anemone Venoms.

Mar Drugs. 2022-11-23

[10]
Multiomic Approach for Bioprospection: Investigation of Toxins and Peptides of Brazilian Sea Anemone .

Mar Drugs. 2023-3-22

引用本文的文献

[1]
Transcriptomics-driven exploration of genetic variation and peptide discovery in the sea anemones Anthopleura midori and Actinia equina.

Sci Rep. 2025-4-8

[2]
Large-Scale AI-Based Structure and Activity Prediction Analysis of ShK Domain Peptides from Sea Anemones in the South China Sea.

Mar Drugs. 2025-2-16

[3]
Isolation and cDNA cloning of four peptide toxins from the sea anemone .

J Venom Anim Toxins Incl Trop Dis. 2024-10-28

[4]
Revealing the Diversity of Sequences, Structures, and Targets of Peptides from South China Sea Based on Transcriptomics.

Mar Drugs. 2024-10-12

[5]
Voltage-Gated K Channel Modulation by Marine Toxins: Pharmacological Innovations and Therapeutic Opportunities.

Mar Drugs. 2024-7-29

本文引用的文献

[1]
Bioprospecting of Sea Anemones (Cnidaria, Anthozoa, Actiniaria) for β-Defensin-like α-Amylase Inhibitors.

Biomedicines. 2023-9-30

[2]
Never, Ever Make an Enemy… Out of an Anemone: Transcriptomic Comparison of Clownfish Hosting Sea Anemone Venoms.

Mar Drugs. 2022-11-23

[3]
KEGG for taxonomy-based analysis of pathways and genomes.

Nucleic Acids Res. 2023-1-6

[4]
Transcriptomes of Giant Sea Anemones from Okinawa as a Tool for Understanding Their Phylogeny and Symbiotic Relationships with Anemonefish.

Zoolog Sci. 2022-8

[5]
Analysis of Structural Determinants of Peptide MS 9a-1 Essential for Potentiating of TRPA1 Channel.

Mar Drugs. 2022-7-21

[6]
Venom Peptide Toxins Targeting the Outer Pore Region of Transient Receptor Potential Vanilloid 1 in Pain: Implications for Analgesic Drug Development.

Int J Mol Sci. 2022-5-21

[7]
Sea anemone venom: Ecological interactions and bioactive potential.

Toxicon. 2022-3

[8]
Antimicrobial Activity of Snake β-Defensins and Derived Peptides.

Toxins (Basel). 2021-12-21

[9]
Contribution of Kazal-Like Domains of the Serine Protease Inhibitor-1 from Toxoplasma gondii in Asthma Therapeutic Vaccination Effectiveness.

Int Arch Allergy Immunol. 2022

[10]
Identification, Synthesis, Conformation and Activity of an Insulin-like Peptide from a Sea Anemone.

Biomolecules. 2021-11-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索