Suppr超能文献

信号驱动的微生物合作与交流:基于诚实信号的群体感应进化

Cue-driven microbial cooperation and communication: evolving quorum sensing with honest signaling.

机构信息

Institute of Evolution, Centre for Ecological Research, HUN-REN, Konkoly-Thege Miklós Út 29-33, 1121, Budapest, Hungary.

Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Lóránd University, Pázmány Péter st. 1/c, 1117, Budapest, Hungary.

出版信息

BMC Biol. 2024 Apr 2;22(1):73. doi: 10.1186/s12915-024-01857-6.

Abstract

BACKGROUND

Quorum sensing (QS) is the ability of microorganisms to assess local clonal density by measuring the extracellular concentration of signal molecules that they produce and excrete. QS is also the only known way of bacterial communication that supports the coordination of within-clone cooperative actions requiring a certain threshold density of cooperating cells. Cooperation aided by QS communication is sensitive to cheating in two different ways: laggards may benefit from not investing in cooperation but enjoying the benefit provided by their cooperating neighbors, whereas Liars explicitly promise cooperation but fail to do so, thereby convincing potential cooperating neighbors to help them, for almost free. Given this double vulnerability to cheats, it is not trivial why QS-supported cooperation is so widespread among prokaryotes.

RESULTS

We investigated the evolutionary dynamics of QS in populations of cooperators for whom the QS signal is an inevitable side effect of producing the public good itself (cue-based QS). Using spatially explicit agent-based lattice simulations of QS-aided threshold cooperation (whereby cooperation is effective only above a critical cumulative level of contributions) and three different (analytical and numerical) approximations of the lattice model, we explored the dynamics of QS-aided threshold cooperation under a feasible range of parameter values. We demonstrate three major advantages of cue-driven cooperation. First, laggards cannot wipe out cooperation under a wide range of reasonable environmental conditions, in spite of an unconstrained possibility to mutate to cheating; in fact, cooperators may even exclude laggards at high cooperation thresholds. Second, lying almost never pays off, if the signal is an inevitable byproduct (i.e., the cue) of cooperation; even very cheap fake signals are selected against. And thirdly, QS is most useful if local cooperator densities are the least predictable, i.e., if their lattice-wise mean is close to the cooperation threshold with a substantial variance.

CONCLUSIONS

Comparing the results of the four different modeling approaches indicates that cue-driven threshold cooperation may be a viable evolutionary strategy for microbes that cannot keep track of past behavior of their potential cooperating partners, in spatially viscous and in well-mixed environments alike. Our model can be seen as a version of the famous greenbeard effect, where greenbeards coexist with defectors in a evolutionarily stable polymorphism. Such polymorphism is maintained by the condition-dependent trade-offs of signal production which are characteristic of cue-based QS.

摘要

背景

群体感应(QS)是微生物通过测量它们产生和分泌的信号分子的细胞外浓度来评估局部克隆密度的能力。QS 也是唯一已知的细菌通讯方式,它支持协调需要一定数量合作细胞的克隆内合作行动。QS 通讯辅助的合作易受两种不同类型的欺骗行为的影响:落后者可能受益于不投资合作,但享受其合作邻居提供的利益,而骗子则明确承诺合作但未能兑现,从而说服潜在的合作邻居几乎免费帮助他们。鉴于这种对骗子的双重脆弱性,QS 支持的合作在原核生物中如此广泛存在并不是微不足道的。

结果

我们研究了合作种群中 QS 的进化动态,对于这些种群来说,QS 信号是产生公共利益本身的必然副作用(基于提示的 QS)。我们使用基于代理的格点模拟来研究 QS 辅助的阈值合作的进化动态(只有在累积贡献达到临界水平以上时合作才有效),并使用三种不同的(分析和数值)格点模型近似值,我们在可行的参数值范围内探索了 QS 辅助的阈值合作的动态。我们展示了基于提示的合作的三个主要优势。首先,在广泛的合理环境条件下,滞后者无法消灭合作,尽管它们有不受限制地突变到欺骗的可能性;实际上,在高合作阈值下,合作者甚至可以排除滞后者。其次,如果信号是合作的不可避免的副产品(即提示),那么说谎几乎没有任何好处;即使是非常便宜的虚假信号也会被淘汰。第三,如果局部合作者密度最不可预测,即如果它们的格点平均值接近合作阈值且方差较大,那么 QS 最有用。

结论

比较四种不同建模方法的结果表明,对于无法跟踪其潜在合作伙伴过去行为的微生物来说,基于提示的阈值合作可能是一种可行的进化策略,无论是在空间粘性环境还是在充分混合的环境中都是如此。我们的模型可以被视为著名的绿胡子效应的一个版本,其中绿胡子与缺陷者在进化稳定的多态性中共存。这种多态性是由基于提示的 QS 的条件相关的信号产生权衡维持的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29a0/10986144/519369e70a46/12915_2024_1857_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验