Suppr超能文献

基于区块链的具有非独立同分布数据的安全且去中心化联邦学习框架。

Secure and decentralized federated learning framework with non-IID data based on blockchain.

作者信息

Zhang Feng, Zhang Yongjing, Ji Shan, Han Zhaoyang

机构信息

College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.

出版信息

Heliyon. 2024 Feb 29;10(5):e27176. doi: 10.1016/j.heliyon.2024.e27176. eCollection 2024 Mar 15.

Abstract

Federated learning enables the collaborative training of machine learning models across multiple organizations, eliminating the need for sharing sensitive data. Nevertheless, in practice, the data distributions among these organizations are often non-independent and identically distributed (non-IID), which poses significant challenges for traditional federated learning. To tackle this challenge, we present a hierarchical federated learning framework based on blockchain technology, which is designed to enhance the training of non-IID data., protect data privacy and security, and improve federated learning performance. The framework builds a global shared pool by constructing a blockchain system to reduce the non-IID degree of local data and improve model accuracy. In addition, we use smart contracts to distribute and collect models and design a main blockchain to store local models for federated aggregation, achieving decentralized federated learning. We train the MLP model on the MNIST dataset and the CNN model on the Fashion-MNIST and CIFAR-10 datasets to verify its feasibility and effectiveness. The experimental results show that the proposed strategy significantly improves the accuracy of decentralized federated learning on three tasks with non-IID data.

摘要

联邦学习能够跨多个组织协作训练机器学习模型,无需共享敏感数据。然而,在实际应用中,这些组织之间的数据分布往往是非独立同分布的(non-IID),这给传统联邦学习带来了重大挑战。为应对这一挑战,我们提出了一种基于区块链技术的分层联邦学习框架,旨在加强对非IID数据的训练、保护数据隐私和安全,并提高联邦学习性能。该框架通过构建区块链系统来建立一个全局共享池,以降低本地数据的非IID程度并提高模型准确性。此外,我们使用智能合约来分发和收集模型,并设计了一个主区块链来存储用于联邦聚合的本地模型,实现去中心化联邦学习。我们在MNIST数据集上训练MLP模型,在Fashion-MNIST和CIFAR-10数据集上训练CNN模型,以验证其可行性和有效性。实验结果表明,所提出的策略显著提高了在具有非IID数据的三个任务上的去中心化联邦学习的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7695/10982967/1a10d39bccee/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验