Suppr超能文献

安全与溯源增强的健康物联网框架:一种区块链管理的联邦学习方法。

Secure and Provenance Enhanced Internet of Health Things Framework: A Blockchain Managed Federated Learning Approach.

作者信息

Rahman Mohamed Abdur, Hossain M Shamim, Islam Mohammad Saiful, Alrajeh Nabil A, Muhammad Ghulam

机构信息

Department of Cyber Security and Forensic ComputingCollege of Computing and Cyber SciencesUniversity of Prince MugrinMadinah41499Saudi Arabia.

Department of Software EngineeringCollege of Computer and Information SciencesKing Saud UniversityRiyadh11543Saudi Arabia.

出版信息

IEEE Access. 2020 Nov 11;8:205071-205087. doi: 10.1109/ACCESS.2020.3037474. eCollection 2020.

Abstract

Recent advancements in the Internet of Health Things (IoHT) have ushered in the wide adoption of IoT devices in our daily health management. For IoHT data to be acceptable by stakeholders, applications that incorporate the IoHT must have a provision for data provenance, in addition to the accuracy, security, integrity, and quality of data. To protect the privacy and security of IoHT data, federated learning (FL) and differential privacy (DP) have been proposed, where private IoHT data can be trained at the owner's premises. Recent advancements in hardware GPUs even allow the FL process within smartphone or edge devices having the IoHT attached to their edge nodes. Although some of the privacy concerns of IoHT data are addressed by FL, fully decentralized FL is still a challenge due to the lack of training capability at all federated nodes, the scarcity of high-quality training datasets, the provenance of training data, and the authentication required for each FL node. In this paper, we present a lightweight hybrid FL framework in which blockchain smart contracts manage the edge training plan, trust management, and authentication of participating federated nodes, the distribution of global or locally trained models, the reputation of edge nodes and their uploaded datasets or models. The framework also supports the full encryption of a dataset, the model training, and the inferencing process. Each federated edge node performs additive encryption, while the blockchain uses multiplicative encryption to aggregate the updated model parameters. To support the full privacy and anonymization of the IoHT data, the framework supports lightweight DP. This framework was tested with several deep learning applications designed for clinical trials with COVID-19 patients. We present here the detailed design, implementation, and test results, which demonstrate strong potential for wider adoption of IoHT-based health management in a secure way.

摘要

健康物联网(IoHT)的最新进展已促使物联网设备在我们的日常健康管理中得到广泛应用。为了使IoHT数据能被利益相关者接受,除了数据的准确性、安全性、完整性和质量外,纳入IoHT的应用程序必须具备数据溯源功能。为了保护IoHT数据的隐私和安全,人们提出了联邦学习(FL)和差分隐私(DP),在这种情况下,私有IoHT数据可以在所有者的场所进行训练。硬件GPU的最新进展甚至允许在连接了IoHT边缘节点的智能手机或边缘设备内进行FL过程。尽管FL解决了IoHT数据的一些隐私问题,但由于所有联邦节点缺乏训练能力、高质量训练数据集稀缺、训练数据的溯源以及每个FL节点所需的认证,完全去中心化的FL仍然是一个挑战。在本文中,我们提出了一个轻量级混合FL框架,其中区块链智能合约管理边缘训练计划、信任管理以及参与联邦节点的认证、全局或本地训练模型的分发、边缘节点及其上传的数据集或模型的声誉。该框架还支持数据集的全加密、模型训练和推理过程。每个联邦边缘节点执行加法加密,而区块链使用乘法加密来聚合更新后的模型参数。为了支持IoHT数据的完全隐私和匿名化,该框架支持轻量级DP。该框架通过几个为COVID-19患者临床试验设计的深度学习应用进行了测试。我们在此展示详细的设计、实现和测试结果,这些结果表明以安全方式更广泛采用基于IoHT的健康管理具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/227f/8043507/2946a261841a/hossa1-3037474.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验