神经网络模型中的临界性概述。

A general description of criticality in neural network models.

作者信息

Zeng Longbin, Feng Jianfeng, Lu Wenlian

机构信息

Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.

Key Laboratory of Computational Neuroscience and BrainInspired Intelligence (Fudan University), Ministry of Education, China.

出版信息

Heliyon. 2024 Feb 29;10(5):e27183. doi: 10.1016/j.heliyon.2024.e27183. eCollection 2024 Mar 15.

Abstract

Recent experimental observations have supported the hypothesis that the cerebral cortex operates in a dynamical regime near criticality, where the neuronal network exhibits a mixture of ordered and disordered patterns. However, A comprehensive study of how criticality emerges and how to reproduce it is still lacking. In this study, we investigate coupled networks with conductance-based neurons and illustrate the co-existence of different spiking patterns, including asynchronous irregular (AI) firing and synchronous regular (SR) state, along with a scale-invariant neuronal avalanche phenomenon (criticality). We show that fast-acting synaptic coupling can evoke neuronal avalanches in the mean-dominated regime but has little effect in the fluctuation-dominated regime. In a narrow region of parameter space, the network exhibits avalanche dynamics with power-law avalanche size and duration distributions. We conclude that three stages which may be responsible for reproducing the synchronized bursting: mean-dominated subthreshold dynamics, fast-initiating a spike event, and time-delayed inhibitory cancellation. Remarkably, we illustrate the mechanisms underlying critical avalanches in the presence of noise, which can be explained as a stochastic crossing state around the Hopf bifurcation under the mean-dominated regime. Moreover, we apply the ensemble Kalman filter to determine and track effective connections for the neuronal network. The method is validated on noisy synthetic BOLD signals and could exactly reproduce the corresponding critical network activity. Our results provide a special perspective to understand and model the criticality, which can be useful for large-scale modeling and computation of brain dynamics.

摘要

最近的实验观察结果支持了这样一种假设,即大脑皮层在接近临界状态的动态机制下运作,其中神经网络呈现出有序和无序模式的混合。然而,对于临界状态如何出现以及如何重现它仍缺乏全面的研究。在本研究中,我们研究了基于电导的神经元组成的耦合网络,并说明了不同尖峰模式的共存,包括异步不规则(AI)放电和同步规则(SR)状态,以及尺度不变的神经元雪崩现象(临界状态)。我们表明,快速作用的突触耦合可以在均值主导的状态下引发神经元雪崩,但在波动主导的状态下几乎没有影响。在参数空间的一个狭窄区域,网络呈现出具有幂律雪崩大小和持续时间分布的雪崩动力学。我们得出结论,可能负责重现同步爆发的三个阶段为:均值主导的阈下动力学、快速引发尖峰事件以及延时抑制消除。值得注意的是,我们阐述了在存在噪声的情况下临界雪崩的潜在机制,这可以解释为在均值主导状态下围绕霍普夫分岔的随机穿越状态。此外,我们应用集合卡尔曼滤波器来确定和跟踪神经网络的有效连接。该方法在有噪声的合成脑血氧水平依赖(BOLD)信号上得到了验证,并且能够准确重现相应的临界网络活动。我们的结果为理解和模拟临界状态提供了一个独特的视角,这对于大脑动力学的大规模建模和计算可能是有用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/807f/10982970/af9fcbd4ac69/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索