临界状态下空间欠采样神经元网络中抛物线型雪崩的恢复
The recovery of parabolic avalanches in spatially subsampled neuronal networks at criticality.
作者信息
Srinivasan Keshav, Ribeiro Tiago L, Kells Patrick, Plenz Dietmar
机构信息
Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD 20892, USA.
出版信息
bioRxiv. 2024 Jun 28:2024.02.26.582056. doi: 10.1101/2024.02.26.582056.
Scaling relationships are key in characterizing complex systems at criticality. In the brain, they are evident in neuronal avalanches-scale-invariant cascades of neuronal activity quantified by power laws. Avalanches manifest at the cellular level as cascades of neuronal groups that fire action potentials simultaneously. Such spatiotemporal synchronization is vital to theories on brain function yet avalanche synchronization is often underestimated when only a fraction of neurons is observed. Here, we investigate biases from fractional sampling within a balanced network of excitatory and inhibitory neurons with all-to-all connectivity and critical branching process dynamics. We focus on how mean avalanche size scales with avalanche duration. For parabolic avalanches, this scaling is quadratic, quantified by the scaling exponent, , reflecting rapid spatial expansion of simultaneous neuronal firing over short durations. However, in networks sampled fractionally, is significantly lower. We demonstrate that applying temporal coarse-graining and increasing a minimum threshold for coincident firing restores , even when as few as 0.1% of neurons are sampled. This correction crucially depends on the network being critical and fails for near sub- and supercritical branching dynamics. Using cellular 2-photon imaging, our approach robustly identifies over a wide parameter regime in ongoing neuronal activity from frontal cortex of awake mice. In contrast, the common 'crackling noise' approach fails to determine under similar sampling conditions at criticality. Our findings overcome scaling bias from fractional sampling and demonstrate rapid, spatiotemporal synchronization of neuronal assemblies consistent with scale-invariant, parabolic avalanches at criticality.
标度关系是刻画处于临界状态的复杂系统的关键。在大脑中,它们在神经元雪崩中很明显——神经元雪崩是由幂律量化的神经元活动的尺度不变级联。雪崩在细胞水平上表现为同时发放动作电位的神经元群级联。这种时空同步对大脑功能理论至关重要,但当只观察到一小部分神经元时,雪崩同步往往被低估。在这里,我们研究了在具有全对全连接和临界分支过程动力学的兴奋性和抑制性神经元平衡网络中,分数采样产生的偏差。我们关注平均雪崩大小如何随雪崩持续时间缩放。对于抛物线形雪崩,这种缩放是二次方的,由缩放指数量化,反映了在短时间内同时神经元放电的快速空间扩展。然而,在分数采样的网络中,显著更低。我们证明,应用时间粗粒化并提高同时放电的最小阈值可以恢复,即使只对0.1%的神经元进行采样。这种校正关键取决于网络处于临界状态,对于接近亚临界和超临界分支动力学则失效。使用细胞双光子成像,我们的方法在清醒小鼠额叶皮质正在进行的神经元活动的广泛参数范围内稳健地识别。相比之下,常见的“噼啪噪声”方法在临界状态下的类似采样条件下无法确定。我们的发现克服了分数采样的标度偏差,并证明了神经元集合的快速时空同步,这与临界状态下的尺度不变抛物线形雪崩一致。