Suppr超能文献

泛素化在 T 细胞发育和自身免疫性疾病中的作用机制研究。

Mechanism study of ubiquitination in T cell development and autoimmune disease.

机构信息

Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China.

College of Medicine, Southwest Jiaotong University, Chengdu, China.

出版信息

Front Immunol. 2024 Mar 18;15:1359933. doi: 10.3389/fimmu.2024.1359933. eCollection 2024.

Abstract

T cells play critical role in multiple immune processes including antigen response, tumor immunity, inflammation, self-tolerance maintenance and autoimmune diseases et. Fetal liver or bone marrow-derived thymus-seeding progenitors (TSPs) settle in thymus and undergo T cell-lineage commitment, proliferation, T cell receptor (TCR) rearrangement, and thymic selections driven by microenvironment composed of thymic epithelial cells (TEC), dendritic cells (DC), macrophage and B cells, thus generating T cells with diverse TCR repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg with the help of TEC and DC, serving for immune tolerance. The sequential proliferation, cell fate decision, and selection during T cell development and self-tolerance establishment are tightly regulated to ensure the proper immune response without autoimmune reaction. There are remarkable progresses in understanding of the regulatory mechanisms regarding ubiquitination in T cell development and the establishment of self-tolerance in the past few years, which holds great potential for further therapeutic interventions in immune-related diseases.

摘要

T 细胞在多种免疫过程中发挥关键作用,包括抗原反应、肿瘤免疫、炎症、自身耐受维持和自身免疫性疾病等。胎肝或骨髓来源的胸腺定植前祖细胞(TSP)定植于胸腺,并在由胸腺上皮细胞(TEC)、树突状细胞(DC)、巨噬细胞和 B 细胞组成的微环境的驱动下,经历 T 细胞谱系的决定、增殖、T 细胞受体(TCR)重排和胸腺选择,从而产生具有多样性 TCR 库的免疫功能但不自反应的 T 细胞。此外,一些自身反应性的胸腺细胞在 TEC 和 DC 的帮助下产生 Treg,用于免疫耐受。T 细胞发育和自身耐受建立过程中的顺序增殖、细胞命运决定和选择受到严格调控,以确保适当的免疫反应而不发生自身免疫反应。近年来,在理解 T 细胞发育中的泛素化调节机制和自身耐受的建立方面取得了显著进展,这为进一步干预免疫相关疾病提供了巨大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c372/10982411/541c4a0b6b29/fimmu-15-1359933-g001.jpg

相似文献

1
Mechanism study of ubiquitination in T cell development and autoimmune disease.
Front Immunol. 2024 Mar 18;15:1359933. doi: 10.3389/fimmu.2024.1359933. eCollection 2024.
4
Immune tolerance and the prevention of autoimmune diseases essentially depend on thymic tissue homeostasis.
Front Immunol. 2024 Mar 20;15:1339714. doi: 10.3389/fimmu.2024.1339714. eCollection 2024.
6
Thymic microenvironments for T-cell repertoire formation.
Adv Immunol. 2008;99:59-94. doi: 10.1016/S0065-2776(08)00603-2.
7
Protein ubiquitination in T cell development.
Front Immunol. 2022 Aug 4;13:941962. doi: 10.3389/fimmu.2022.941962. eCollection 2022.
8
The thymus road to a T cell: migration, selection, and atrophy.
Front Immunol. 2024 Aug 27;15:1443910. doi: 10.3389/fimmu.2024.1443910. eCollection 2024.
9
A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance.
Nature. 2015 Dec 3;528(7580):132-136. doi: 10.1038/nature16141. Epub 2015 Nov 25.
10
ZAP70, too little, too much can lead to autoimmunity.
Immunol Rev. 2022 May;307(1):145-160. doi: 10.1111/imr.13058. Epub 2021 Dec 18.

引用本文的文献

2
Hub genes and key pathways of Graves' disease: bioinformatics analysis and validation.
Hormones (Athens). 2025 May 19. doi: 10.1007/s42000-025-00668-w.
3
Single-cell multiomic analysis unveils the immune landscape dynamics of graves' ophthalmopathy.
Commun Biol. 2025 May 12;8(1):732. doi: 10.1038/s42003-025-08115-7.
4
Lactate programs PBX1 lactylation and mesangial proliferation in lupus nephritis.
JCI Insight. 2025 Apr 29;10(11). doi: 10.1172/jci.insight.190838. eCollection 2025 Jun 9.

本文引用的文献

1
Targeting the Ubiquitin-Proteasome System and Recent Advances in Cancer Therapy.
Cells. 2023 Dec 22;13(1):29. doi: 10.3390/cells13010029.
2
How autoreactive thymocytes differentiate into regulatory versus effector CD4 T cells after avoiding clonal deletion.
Nat Immunol. 2023 Apr;24(4):637-651. doi: 10.1038/s41590-023-01469-2. Epub 2023 Mar 23.
3
Proteolysis-targeting chimeras (PROTACs) in cancer therapy.
Mol Cancer. 2022 Apr 11;21(1):99. doi: 10.1186/s12943-021-01434-3.
4
Dual roles for LUBAC signaling in thymic epithelial cell development and survival.
Cell Death Differ. 2021 Oct;28(10):2946-2956. doi: 10.1038/s41418-021-00850-8. Epub 2021 Aug 11.
5
Thymus and autoimmunity.
Semin Immunopathol. 2021 Feb;43(1):45-64. doi: 10.1007/s00281-021-00842-3. Epub 2021 Feb 3.
6
T Cell Development: Old Tales Retold By Single-Cell RNA Sequencing.
Trends Immunol. 2021 Feb;42(2):165-175. doi: 10.1016/j.it.2020.12.004. Epub 2021 Jan 11.
7
A 2020 View of Thymus Stromal Cells in T Cell Development.
J Immunol. 2021 Jan 15;206(2):249-256. doi: 10.4049/jimmunol.2000889.
8
How transcription factors drive choice of the T cell fate.
Nat Rev Immunol. 2021 Mar;21(3):162-176. doi: 10.1038/s41577-020-00426-6. Epub 2020 Sep 11.
9
Ubiquitination of MHC Class II Is Required for Development of Regulatory but Not Conventional CD4 T Cells.
J Immunol. 2020 Sep 1;205(5):1207-1216. doi: 10.4049/jimmunol.1901328. Epub 2020 Aug 3.
10
Biological Mechanisms and Clinical Significance of Mutations in Human Cancer.
Cancer Discov. 2020 Aug;10(8):1103-1120. doi: 10.1158/2159-8290.CD-19-1220. Epub 2020 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验