Suppr超能文献

基于加权和自校准预测器的线性混合模型对异常聚类进行标记。

Flagging unusual clusters based on linear mixed models using weighted and self-calibrated predictors.

机构信息

Division of Biostatistics, Department of Epidemiology and Biostatistics, University of California, San Francisco 94158, United States.

出版信息

Biometrics. 2024 Mar 27;80(2). doi: 10.1093/biomtc/ujae022.

Abstract

Statistical models incorporating cluster-specific intercepts are commonly used in hierarchical settings, for example, observations clustered within patients or patients clustered within hospitals. Predicted values of these intercepts are often used to identify or "flag" extreme or outlying clusters, such as poorly performing hospitals or patients with rapid declines in their health. We consider a variety of flagging rules, assessing different predictors, and using different accuracy measures. Using theoretical calculations and comprehensive numerical evaluation, we show that previously proposed rules based on the 2 most commonly used predictors, the usual best linear unbiased predictor and fixed effects predictor, perform extremely poorly: the incorrect flagging rates are either unacceptably high (approaching 0.5 in the limit) or overly conservative (eg, much <0.05 for reasonable parameter values, leading to very low correct flagging rates). We develop novel methods for flagging extreme clusters that can control the incorrect flagging rates, including very simple-to-use versions that we call "self-calibrated." The new methods have substantially higher correct flagging rates than previously proposed methods for flagging extreme values, while controlling the incorrect flagging rates. We illustrate their application using data on length of stay in pediatric hospitals for children admitted for asthma diagnoses.

摘要

在层次结构设置中,通常使用包含聚类特定截距的统计模型,例如,在患者内聚类的观察值或在医院内聚类的患者。这些截距的预测值通常用于识别或“标记”极端或异常聚类,例如表现不佳的医院或健康状况迅速下降的患者。我们考虑了多种标记规则,评估了不同的预测因子,并使用了不同的准确性度量。通过理论计算和全面的数值评估,我们表明,先前基于最常用的两个预测因子(通常最佳线性无偏预测因子和固定效应预测因子)提出的规则表现非常差:错误标记率要么高得不可接受(接近 0.5 的极限),要么过于保守(例如,对于合理的参数值,远远 <0.05,导致正确标记率非常低)。我们开发了用于标记极端聚类的新方法,可以控制错误标记率,包括非常简单易用的版本,我们称之为“自校准”。与先前提出的用于标记极值的方法相比,新方法具有更高的正确标记率,同时控制了错误标记率。我们使用因哮喘诊断而住院的儿科医院住院时间的数据说明了它们的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验