Su Bingwen, Peng Xiao, Yan Zhibo, Lin Lin, Huang Xiaokun, Liu Jun-Ming
Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
Department of Applied Physics, College of Science, Nanjing Forestry University, Nanjing 210037, China.
Phys Chem Chem Phys. 2024 Apr 17;26(15):11722-11730. doi: 10.1039/d4cp00318g.
Ferrovalley materials hold great promise for implementation of logic and memory devices in valleytronics. However, there have so far been limited ferrovalley materials exhibiting significant valley polarization and high Curie temperature (). Using first-principles calculations, we predict that the TiTeBr monolayer is a promising ferrovalley candidate. It exhibits intrinsic ferromagnetism with as high as 220 K. It is indicated that an out-of-plane alignment of magnetization demonstrates a valley polarization up to 113 meV in the topmost valence band, as further verified by perturbation theory considering both the spin polarization and spin-orbit coupling. Under an in-plane electric field, the valley-dependent Berry curvature results in the anomalous valley Hall effect (AVHE). Moreover, under a suitable in-plane biaxial strain, the TiTeBr monolayer transforms into a Chern insulator with a nonzero Chern number, yet retains its ferrovalley characters and thus the emergent quantum anomalous valley Hall effect (QAVHE). Our study indicates that the TiTeBr monolayer is a promising ferrovalley material, and it provides a platform for investigating the valley-dependent Hall effect.
铁谷材料在谷电子学中的逻辑和存储器件应用方面具有巨大潜力。然而,到目前为止,表现出显著谷极化和高居里温度()的铁谷材料数量有限。通过第一性原理计算,我们预测TiTeBr单层是一种很有前景的铁谷候选材料。它表现出高达220 K的本征铁磁性。研究表明,面外磁化排列在最顶层价带中表现出高达113 meV的谷极化,考虑自旋极化和自旋轨道耦合的微扰理论进一步证实了这一点。在面内电场作用下,谷依赖的贝里曲率导致反常谷霍尔效应(AVHE)。此外,在合适的面内双轴应变下,TiTeBr单层转变为具有非零陈数的陈绝缘体,但仍保留其铁谷特性,从而产生量子反常谷霍尔效应(QAVHE)。我们的研究表明,TiTeBr单层是一种很有前景的铁谷材料,它为研究谷依赖的霍尔效应提供了一个平台。