Ferté Benoît, Cao Xiangyu
Université Paris-Saclay, CNRS, LPTMS, 91405 Orsay, France.
Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France.
Phys Rev Lett. 2024 Mar 15;132(11):110201. doi: 10.1103/PhysRevLett.132.110201.
We propose a solvable model of quantum Darwinism to encoding transitions-abrupt changes in how quantum information spreads in a many-body system under unitary dynamics. We consider a random Clifford circuit on an expanding tree, whose input qubit is entangled with a reference. The model has a quantum Darwinism phase, where one classical bit of information about the reference can be retrieved from an arbitrarily small fraction of the output qubits, and an encoding phase where such retrieval is impossible. The two phases are separated by a mixed phase and two continuous transitions. We compare the exact result to a two-replica calculation. The latter yields a similar "annealed" phase diagram, which applies also to a model with Haar random unitaries. We relate our approach to measurement-induced phase transitions (MIPTs), by solving a modified model where an environment eavesdrops on an encoding system. It has a sharp MIPT only with full access to the environment.
我们提出了一个可解的量子达尔文主义模型,用于编码跃迁——即在幺正动力学下量子信息在多体系统中传播方式的突然变化。我们考虑一个扩展树上的随机克利福德电路,其输入量子比特与一个参考态纠缠。该模型有一个量子达尔文主义相,在这个相中,关于参考态的一个经典比特信息可以从任意小部分的输出量子比特中检索到;还有一个编码相,在这个相中这种检索是不可能的。这两个相由一个混合相和两个连续跃迁分隔开。我们将精确结果与双副本计算进行比较。后者产生了一个类似的“退火”相图,该相图也适用于具有哈尔随机幺正算符的模型。通过求解一个修改后的模型,我们将我们的方法与测量诱导相变(MIPT)联系起来,在这个修改后的模型中,一个环境窃听一个编码系统。它只有在完全访问环境时才会有一个尖锐的MIPT。