Suppr超能文献

利用全基因组序列、高密度和综合注释相关基因缺失基因型,研究参考群体大小和结构对两猪系母本性状基因组预测的影响。

Effects of reference population size and structure on genomic prediction of maternal traits in two pig lines using whole-genome sequence-, high-density- and combined annotation-dependent depletion genotypes.

机构信息

Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.

Norsvin SA, Hamar, Norway.

出版信息

J Anim Breed Genet. 2024 Nov;141(6):587-601. doi: 10.1111/jbg.12865. Epub 2024 Apr 2.

Abstract

The aim of this study was to investigate the reference population size required to obtain substantial prediction accuracy within- and across-lines and the effect of using a multi-line reference population for genomic predictions of maternal traits in pigs. The data consisted of two nucleus pig populations, one pure-bred Landrace (L) and one Synthetic (S) Yorkshire/Large White line. All animals were genotyped with up to 30 K animals in each line, and all had records on maternal traits. Prediction accuracy was tested with three different marker data sets: High-density SNP (HD), whole genome sequence (WGS), and markers derived from WGS based on pig combined annotation dependent depletion-score (pCADD). Also, two different genomic prediction methods (GBLUP and Bayes GC) were compared for four maternal traits; total number piglets born (TNB), total number of stillborn piglets (STB), Shoulder Lesion Score and Body Condition Score. The main results from this study showed that a reference population of 3 K-6 K animals for within-line prediction generally was sufficient to achieve high prediction accuracy. However, when the number of animals in the reference population was increased to 30 K, the prediction accuracy significantly increased for the traits TNB and STB. For multi-line prediction accuracy, the accuracy was most dependent on the number of within-line animals in the reference data. The S-line provided a generally higher prediction accuracy compared to the L-line. Using pCADD scores to reduce the number of markers from WGS data in combination with the GBLUP method generally reduced prediction accuracies relative to GBLUP using HD genotypes. The BayesGC method benefited from a large reference population and was less dependent on the different genotype marker datasets to achieve a high prediction accuracy.

摘要

本研究旨在探讨在猪的母系性状基因组预测中,获得线内和线间实质性预测准确性所需的参考群体规模,以及使用多线参考群体的效果。数据包括两个核猪群体,一个纯系长白猪(L)和一个合成的约克夏/大白猪(S)系。每个系的所有动物都进行了多达 30000 个个体的基因型检测,并且所有动物都有母系性状的记录。使用三种不同的标记数据集(高密度 SNP(HD)、全基因组序列(WGS)和基于猪联合注释依赖耗竭评分(pCADD)的 WGS 标记)测试了预测准确性。此外,还比较了两种不同的基因组预测方法(GBLUP 和 Bayes GC),用于预测四个母系性状:总产仔数(TNB)、总死产仔数(STB)、肩部损伤评分和体况评分。本研究的主要结果表明,对于线内预测,一般来说,参考群体 3000-6000 个个体足以实现高预测准确性。然而,当参考群体中的动物数量增加到 30000 个时,TNB 和 STB 性状的预测准确性显著提高。对于多线预测准确性,准确性主要取决于参考数据中线内动物的数量。S 系通常比 L 系提供更高的预测准确性。使用 pCADD 评分来减少 WGS 数据中的标记数量,并结合 GBLUP 方法,通常会降低预测准确性,而不是使用 HD 基因型的 GBLUP。BayesGC 方法受益于大型参考群体,并且对不同的基因型标记数据集的依赖性较小,以实现高预测准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验