Sanchez-Manzano David, Orfila Gloria, Sander Anke, Marcano Lourdes, Gallego Fernando, Mawass Mohamad-Assaad, Grilli Francesco, Arora Ashima, Peralta Andrea, Cuellar Fabian A, Fernandez-Roldan Jose A, Reyren Nicolas, Kronast Florian, Leon Carlos, Rivera-Calzada Alberto, Villegas Javier E, Santamaria Jacobo, Valencia Sergio
Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France.
GFMC. Department Física de Materiales. Facultad de Física. Universidad Complutense. 28040 Madrid, Spain.
ACS Appl Mater Interfaces. 2024 Apr 17;16(15):19681-19690. doi: 10.1021/acsami.3c17671. Epub 2024 Apr 2.
Swirling spin textures, including topologically nontrivial states, such as skyrmions, chiral domain walls, and magnetic vortices, have garnered significant attention within the scientific community due to their appeal from both fundamental and applied points of view. However, their creation, controlled manipulation, and stability are typically constrained to certain systems with specific crystallographic symmetries, bulk or interface interactions, and/or a precise stacking sequence of materials. Recently, a new approach has shown potential for the imprint of magnetic radial vortices in soft ferromagnetic compounds making use of the stray field of YBaCuO superconducting microstructures in ferromagnet/superconductor (FM/SC) hybrids at temperatures below the superconducting transition temperature (). Here, we explore the lower size limit for the imprint of magnetic radial vortices in square and disc shaped structures as well as the persistence of these spin textures above , with magnetic domains retaining partial memory. Structures with circular geometry and with FM patterned to smaller radius than the superconductor island facilitate the imprinting of magnetic radial vortices and improve their stability above , in contrast to square structures where the presence of magnetic domains increases the dipolar energy. Micromagnetic modeling coupled with a SC field model reveals that the stabilization mechanism above is mediated by microstructural defects. Superconducting control of swirling spin textures, and their stabilization above the superconducting transition temperature by means of defect engineering holds promising prospects for shaping superconducting spintronics based on magnetic textures.
涡旋自旋纹理,包括拓扑非平凡态,如斯格明子、手性畴壁和磁涡旋,由于其在基础和应用方面的吸引力,在科学界引起了广泛关注。然而,它们的产生、可控操纵和稳定性通常局限于某些具有特定晶体对称性、体相或界面相互作用和/或精确材料堆叠顺序的系统。最近,一种新方法显示出利用铁磁体/超导体(FM/SC)混合体系中YBaCuO超导微结构在低于超导转变温度()时的杂散场,在软铁磁化合物中印记磁径向涡旋的潜力。在此,我们探究方形和盘形结构中磁径向涡旋印记的尺寸下限,以及这些自旋纹理在高于时的持久性,磁畴保留部分记忆。与方形结构相比,具有圆形几何形状且铁磁体图案半径小于超导岛的结构有利于磁径向涡旋的印记并提高其在高于时的稳定性,在方形结构中磁畴的存在会增加偶极能。微磁学建模与超导场模型相结合表明,高于时的稳定机制由微结构缺陷介导。通过缺陷工程对涡旋自旋纹理进行超导控制及其在超导转变温度以上的稳定,为基于磁纹理的超导自旋电子学的形成带来了广阔前景。