Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States.
Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States.
Biochemistry. 2024 Apr 16;63(8):1026-1037. doi: 10.1021/acs.biochem.3c00725. Epub 2024 Apr 2.
The mitochondrial enzyme cytochrome P450 11B2 (aldosterone synthase) catalyzes the 3 terminal transformations in the biosynthesis of aldosterone from 11-deoxycorticosterone (DOC): 11β-hydroxylation to corticosterone, 18-hydroxylation, and 18-oxidation. Prior studies have shown that P450 11B2 produces more aldosterone from DOC than from the intermediate corticosterone and that the reaction sequence is processive, with intermediates remaining bound to the active site between oxygenation reactions. In contrast, P450 11B1 (11β-hydroxylase), which catalyzes the terminal step in cortisol biosynthesis, shares a 93% amino acid sequence identity with P450 11B2, converts DOC to corticosterone, but cannot synthesize aldosterone from DOC. The biochemical and biophysical properties of P450 11B2, which enable its unique 18-oxygenation activity and processivity, yet are not also represented in P450 11B1, remain unknown. To understand the mechanism of aldosterone biosynthesis, we introduced point mutations at residue 320, which partially exchange the activities of P450 11B1 and P450 11B2 (V320A and A320V, respectively). We then investigated NADPH coupling efficiencies, binding kinetics and affinities, and product formation of purified P450 11B1 and P450 11B2, wild-type, and residue 320 mutations in phospholipid vesicles and nanodiscs. Coupling efficiencies for the 18-hydroxylase reaction with corticosterone as the substrate failed to correlate with aldosterone synthesis, ruling out uncoupling as a relevant mechanism. Conversely, corticosterone dissociation rates correlated inversely with aldosterone production. We conclude that intermediate dissociation kinetics, not coupling efficiency, enable P450 11B2 to synthesize aldosterone via a processive mechanism. Our kinetic data also suggest that the binding of DOC to P450 11B enzymes occurs in at least two distinct steps, favoring an induced-fit mechanism.
线粒体酶细胞色素 P450 11B2(醛固酮合酶)催化从 11-去氧皮质酮(DOC)生物合成醛固酮的 3 个末端转化:11β-羟化产生皮质酮、18-羟化和 18-氧化。先前的研究表明,P450 11B2 从 DOC 产生的醛固酮比从中间产物皮质酮多,并且反应序列是连续的,在加氧反应之间中间体仍然与活性位点结合。相比之下,催化皮质醇生物合成终末步骤的 P450 11B1(11β-羟化酶)与 P450 11B2 具有 93%的氨基酸序列同一性,将 DOC 转化为皮质酮,但不能从 DOC 合成醛固酮。P450 11B2 的生化和生物物理特性使其具有独特的 18-加氧活性和连续性,但在 P450 11B1 中并不存在,目前尚不清楚。为了了解醛固酮生物合成的机制,我们在残基 320 处引入点突变,该突变部分交换了 P450 11B1 和 P450 11B2 的活性(分别为 V320A 和 A320V)。然后,我们在磷脂囊泡和纳米碟中研究了纯化的 P450 11B1 和 P450 11B2、野生型和残基 320 突变的 NADPH 偶联效率、结合动力学和亲和力以及产物形成。以皮质酮为底物的 18-羟化酶反应的偶联效率与醛固酮合成未能相关,排除了去偶联作为相关机制。相反,皮质酮解离速率与醛固酮的产生呈反比。我们得出结论,中间物的解离动力学,而不是偶联效率,使 P450 11B2 能够通过连续的机制合成醛固酮。我们的动力学数据还表明,DOC 与 P450 11B 酶的结合至少发生在两个不同的步骤中,有利于诱导契合机制。