Liu Ying, Xiao Liyang, Tan Haiwen, Zhang Jingtong, Dong Cunku, Liu Hui, Du Xiwen, Yang Jing
Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.
Small. 2024 Aug;20(34):e2401504. doi: 10.1002/smll.202401504. Epub 2024 Apr 2.
As promising oxygen evolution reaction (OER) catalysts, spinel-type oxides face the bottleneck of weak adsorption for oxygen-containing intermediates, so it is challenging to make a further breakthrough in remarkably lowering the OER overpotential. In this study, a novel strategy is proposed to substantially enhance the OER activity of spinel oxides based on amorphous/crystalline phases mixed spinel FeNiO nanosheets array, enriched with oxygen vacancies, in situ grown on a nickel foam (NF). This unique architecture is achieved through a one-step millisecond laser direct writing method. The presence of amorphous phases with abundant oxygen vacancies significantly enhances the adsorption of oxygen-containing intermediates and changes the rate-determining step from OH*→O* to O*→OOH*, which greatly reduces the thermodynamic energy barrier. Moreover, the crystalline phase interweaving with amorphous domains serves as a conductive shortcut to facilitate rapid electron transfer from active sites in the amorphous domain to NF, guaranteeing fast OER kinetics. Such an anodic electrode exhibits a nearly ten fold enhancement in OER intrinsic activity compared to the pristine counterpart. Remarkably, it demonstrates record-low overpotentials of 246 and 315 mV at 50 and 500 mA cm in 1 m KOH with superior long-term stability, outperforming other NiFe-based spinel oxides catalysts.
作为有前景的析氧反应(OER)催化剂,尖晶石型氧化物面临着对含氧化合物中间体吸附较弱的瓶颈,因此要在显著降低OER过电位方面取得进一步突破具有挑战性。在本研究中,提出了一种新策略,以大幅提高基于非晶/晶相混合的尖晶石FeNiO纳米片阵列的尖晶石氧化物的OER活性,该阵列富含氧空位,原位生长在泡沫镍(NF)上。这种独特的结构是通过一步毫秒激光直写方法实现的。具有大量氧空位的非晶相的存在显著增强了对含氧化合物中间体的吸附,并将速率决定步骤从OH*→O转变为O→OOH*,这大大降低了热力学能垒。此外,与非晶域交织的晶相作为导电捷径,便于电子从非晶域中的活性位点快速转移到NF,保证了快速的OER动力学。与原始对应物相比,这种阳极电极的OER本征活性提高了近十倍。值得注意的是,在1 m KOH中,在50和500 mA cm下,它分别表现出创纪录的低过电位246和315 mV,具有优异的长期稳定性,优于其他基于NiFe的尖晶石氧化物催化剂。