Suppr超能文献

Flat bands without twists: periodic holey graphene.

作者信息

de Jesús Espinosa-Champo Abdiel, Naumis Gerardo G

机构信息

Posgrado de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 20-364 01000 Ciudad de México, Mexico.

Depto. de Sistemas Complejos, Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 20-364, 01000 CDMX, Mexico.

出版信息

J Phys Condens Matter. 2024 Apr 9;36(27). doi: 10.1088/1361-648X/ad39be.

Abstract

(HG) is a widely used graphene material for the synthesis of high-purity and highly crystalline materials. The electronic properties of a periodic distribution of lattice holes are explored here, demonstrating the emergence of flat bands. It is established that such flat bands arise as a consequence of an induced sublattice site imbalance, i.e. by having more sites in one of the graphene's bipartite sublattice than in the other. This is equivalent to the breaking of a path-exchange symmetry. By further breaking the inversion symmetry, gaps and a nonzero Berry curvature are induced, leading to topological bands. In particular, the folding of the Dirac cones from the hexagonal Brillouin zone (BZ) to the holey superlattice rectangular BZ of HG, with sizes proportional to an integertimes the graphene's lattice parameter, leads to a periodicity in the gap formation such thatn≡0(mod 3). A low-energy hamiltonian for the three central bands is also obtained revealing that the system behaves as an effectiveα-T3graphene material. Therefore, a simple protocol is presented here that allows for obtaining flat bands at will. Such bands are known to increase electron-electron correlation effects. Therefore, the present work provides an alternative system that is much easier to build than twisted systems, allowing for the production of flat bands and potentially highly correlated quantum phases.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验