Bai Dachang, Guo Xiuli, Wang Xinghua, Xu Wenjie, Cheng Ruoshi, Wei Donghui, Lan Yu, Chang Junbiao
State Key Laboratory of Antiviral Drugs, State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, China.
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
Nat Commun. 2024 Apr 2;15(1):2833. doi: 10.1038/s41467-024-47169-9.
Umpolung is an old and important concept in organic chemistry, which significantly expands the chemical space and provides unique structures. While, previous research focused on carbonyls or imine derivatives, the umpolung reactivity of polarized C-C σ-bonds still needs to explore. Herein, we report an umpolung reaction of bicyclo[1.1.0]butanes (BCBs) with electron-deficient alkenes to construct the C(sp)-C(sp) bond at the electrophilic position of C-C σ-bonds in BCBs without any transition-metal catalysis. Specifically, this transformation relies on the strain-release driven bridging σ-bonds in bicyclo[1.1.0]butanes (BCBs), which are emerged as ene components, providing an efficient and straightforward synthesis route of various functionalized cyclobutenes and conjugated dienes, respectively. The synthetic utilities of this protocol are performed by several transformations. Preliminary mechanistic studies including density functional theory (DFT) calculation support the concerted Alder-ene type process of C-C σ-bond cleavage with hydrogen transfer. This work extends the umpolung reaction to C-C σ-bonds and provides high-value structural motifs.
极性翻转是有机化学中一个古老且重要的概念,它极大地扩展了化学空间并提供独特的结构。然而,以往的研究集中在羰基或亚胺衍生物上,极化的C-C σ键的极性翻转反应性仍有待探索。在此,我们报道了双环[1.1.0]丁烷(BCBs)与缺电子烯烃的极性翻转反应,在没有任何过渡金属催化的情况下,在BCBs的C-C σ键的亲电位置构建C(sp)-C(sp)键。具体而言,这种转化依赖于双环[1.1.0]丁烷(BCBs)中应变释放驱动的桥连σ键,它们作为烯组分出现,分别提供了各种功能化环丁烯和共轭二烯的高效直接合成路线。该方法的合成实用性通过几种转化得以实现。包括密度泛函理论(DFT)计算在内的初步机理研究支持了C-C σ键裂解与氢转移的协同Alder-烯型过程。这项工作将极性翻转反应扩展到C-C σ键,并提供了高价值的结构基序。