Suppr超能文献

分层加权病例-队列数据中相对危险度和纯粹风险的 Cox 模型推断。

Cox model inference for relative hazard and pure risk from stratified weight-calibrated case-cohort data.

机构信息

Division of Cancer Epidemiology and Genetics, Biostatistics Branch, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850-9780, USA.

出版信息

Lifetime Data Anal. 2024 Jul;30(3):572-599. doi: 10.1007/s10985-024-09621-2. Epub 2024 Apr 2.

Abstract

The case-cohort design obtains complete covariate data only on cases and on a random sample (the subcohort) of the entire cohort. Subsequent publications described the use of stratification and weight calibration to increase efficiency of estimates of Cox model log-relative hazards, and there has been some work estimating pure risk. Yet there are few examples of these options in the medical literature, and we could not find programs currently online to analyze these various options. We therefore present a unified approach and R software to facilitate such analyses. We used influence functions adapted to the various design and analysis options together with variance calculations that take the two-phase sampling into account. This work clarifies when the widely used "robust" variance estimate of Barlow (Biometrics 50:1064-1072, 1994) is appropriate. The corresponding R software, CaseCohortCoxSurvival, facilitates analysis with and without stratification and/or weight calibration, for subcohort sampling with or without replacement. We also allow for phase-two data to be missing at random for stratified designs. We provide inference not only for log-relative hazards in the Cox model, but also for cumulative baseline hazards and covariate-specific pure risks. We hope these calculations and software will promote wider use of more efficient and principled design and analysis options for case-cohort studies.

摘要

病例-队列设计仅在病例和整个队列的随机样本(子队列)上获得完整的协变量数据。随后的出版物描述了使用分层和权重校准来提高 Cox 模型对数相对风险估计的效率,并且已经有一些估计纯粹风险的工作。然而,这些选项在医学文献中很少见,我们也找不到当前在线分析这些各种选项的程序。因此,我们提出了一种统一的方法和 R 软件来促进这些分析。我们使用适用于各种设计和分析选项的影响函数以及考虑两阶段抽样的方差计算。这项工作阐明了何时广泛使用的 Barlow(Biometrics 50:1064-1072, 1994)的“稳健”方差估计是合适的。相应的 R 软件 CaseCohortCoxSurvival 便于在有或没有分层和/或权重校准的情况下进行分析,并且对于有或没有替换的子队列抽样。我们还允许分层设计中第二阶段数据随机缺失。我们不仅为 Cox 模型中的对数相对风险提供了推断,还为累积基线风险和协变量特定的纯风险提供了推断。我们希望这些计算和软件将促进更广泛地使用更有效和有原则的病例-队列研究的设计和分析选项。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e54d/11420370/2e88676914e5/10985_2024_9621_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验