Suppr超能文献

通过多步机器学习探索具有块状骨架结构的负热膨胀材料及其相关标度关系。

Exploring negative thermal expansion materials with bulk framework structures and their relevant scaling relationships through multi-step machine learning.

作者信息

Cai Yu, Wang Chunyan, Yuan Huanli, Guo Yuan, Cho Jun-Hyung, Xing Xianran, Jia Yu

机构信息

Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials and Engineering, Henan University, Kaifeng 475001, China.

Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China.

出版信息

Mater Horiz. 2024 Jun 17;11(12):2914-2925. doi: 10.1039/d3mh01509b.

Abstract

Discovering new negative thermal expansion (NTE) materials is a great challenge in experiment. Meanwhile, the machine learning (ML) method can be another approach to explore NTE materials using the existing material databases. Herein, we adopt the multi-step ML method with efficient data augmentation and cross-validation to identify around 1000 materials, including oxides, fluorides, and cyanides, with bulk framework structures as new potential NTE candidate materials from ICSD and other databases. Their corresponding coefficients of negative thermal expansion (CNTE) and temperature ranges are also well predicted. Among them, about 57 materials are predicted to have an NTE probability of 100%. Some predicted NTE materials were tested by the first-principles calculations with quasi-harmonic approximation (QHA), which indicates that the ML results are in good agreement with the first principles calculation results. Based on the comprehensive analysis of the existing and predicted NTE materials, we established three universal relationships of CNTE with an average electronegativity, porosity, and temperature range. From these, we also identified some important critical values characterizing the NTE property, which can serve as an important criterion for designing new NTE materials.

摘要

发现新型负热膨胀(NTE)材料在实验中是一项巨大挑战。与此同时,机器学习(ML)方法可成为利用现有材料数据库探索NTE材料的另一种途径。在此,我们采用具有高效数据增强和交叉验证的多步ML方法,从ICSD和其他数据库中识别出约1000种具有体框架结构的材料,包括氧化物、氟化物和氰化物,作为新的潜在NTE候选材料。它们相应的负热膨胀系数(CNTE)和温度范围也得到了很好的预测。其中,约57种材料被预测具有100%的NTE概率。一些预测的NTE材料通过基于准谐近似(QHA)的第一性原理计算进行了测试,这表明ML结果与第一性原理计算结果吻合良好。基于对现有和预测的NTE材料的综合分析,我们建立了CNTE与平均电负性、孔隙率和温度范围的三个通用关系。由此,我们还确定了一些表征NTE特性的重要临界值,这些值可作为设计新型NTE材料的重要标准。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验