Suppr超能文献

基于 CT 数据的骨化黄韧带自动分割的定位上下文渐进回归。

Incremental regression of localization context for automatic segmentation of ossified ligamentum flavum from CT data.

机构信息

Institute of Medical Robotics, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, 200240, China.

Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.

出版信息

Int J Comput Assist Radiol Surg. 2024 Sep;19(9):1723-1731. doi: 10.1007/s11548-024-03109-y. Epub 2024 Apr 3.

Abstract

PURPOSE

Segmentation of ossified ligamentum flavum (OLF) plays a crucial role in developing computer-assisted, image-guided systems for decompressive thoracic laminectomy. Manual segmentation is time-consuming, tedious, and label-intensive. It also suffers from inter- and intra-observer variability. Automatic segmentation is highly desired.

METHODS

A two-stage, localization context-aware framework is developed for automatic segmentation of ossified ligamentum flavum. In the first stage, localization heatmaps of OLFs are obtained via incremental regression. In the second stage, the obtained heatmaps are then treated as the localization context for a segmentation U-Net. Our framework can directly map a whole volumetic data to its volume-wise labels.

RESULTS

We designed and conducted comprehensive experiments on datasets of 100 patients to evaluate the performance of the proposed method. Our method achieved an average Dice similarity coefficient of 61.2 ± 7.6%, an average surface distance of 1.1 ± 0.5 mm, and an average positive predictive value of 62.0 ± 12.8%.

CONCLUSION

To the best knowledge of the authors, this is the first study aiming for automatic segmentation of ossified ligamentum flavum. Results from the comprehensive experiments demonstrate the superior performance of the proposed method over the state-of-the-art methods.

摘要

目的

在开发用于胸椎管减压减压术的计算机辅助、图像引导系统中,黄韧带骨化(OLF)的分割起着至关重要的作用。手动分割既耗时、繁琐又需要大量标签,并且存在观察者内和观察者间的变异性。非常需要自动分割。

方法

开发了一个两阶段、本地化感知框架,用于自动分割骨化黄韧带。在第一阶段,通过增量回归获得 OLF 的定位热图。在第二阶段,然后将获得的热图作为分割 U-Net 的定位上下文。我们的框架可以直接将整个体积数据映射到其体积标签。

结果

我们在 100 名患者的数据集上设计并进行了全面的实验,以评估所提出方法的性能。我们的方法的平均 Dice 相似系数为 61.2±7.6%,平均表面距离为 1.1±0.5mm,平均阳性预测值为 62.0±12.8%。

结论

据作者所知,这是第一项旨在自动分割骨化黄韧带的研究。综合实验的结果表明,与最先进的方法相比,所提出的方法具有优越的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验