Meng Xin, Zhou Yuan, Du Kaiyue, Ma Jun, Meng Jin, Kumar Aakash, Lv Jiahang, Kim Jonghyuk, Wang Shifeng
J Opt Soc Am A Opt Image Sci Vis. 2024 Apr 1;41(4):739-748. doi: 10.1364/JOSAA.511948.
With the development of autonomous driving, there has been considerable attention on 3D object detection using LiDAR. Pillar-based LiDAR point cloud detection algorithms are extensively employed in the industry due to their simple structure and high real-time performance. Nevertheless, the pillar-based detection network suffers from significant loss of 3D coordinate information during the feature degradation and extraction process. In the paper, we introduce a novel framework with high performance, termed EFNet. The EFNet uses the Enhancing Pillar Feature Module (EPFM) to provide more accurate representations of features from two directions: pillar internal space and pillar external space. Additionally, the Head Up Module (HUM) is utilized in the detection head to integrate multi-scale information and enhance the network's information perception ability. The EFNet achieves impressive results on the nuScenes datasets, namely, 53.3% NDS and 42.4% mAP. Compared to the baseline PointPillars, EFNet improves 8% NDS and 11.9% mAP. The results demonstrate that the proposed framework can effectively improve the network's accuracy while ensuring deployability.
随着自动驾驶技术的发展,基于激光雷达的3D目标检测受到了广泛关注。基于柱体的激光雷达点云检测算法因其结构简单和实时性高而在行业中得到广泛应用。然而,基于柱体的检测网络在特征退化和提取过程中会损失大量3D坐标信息。在本文中,我们引入了一种高性能的新型框架,称为EFNet。EFNet使用增强柱体特征模块(EPFM)从两个方向提供更准确的特征表示:柱体内部空间和柱体外部空间。此外,在检测头中使用抬头模块(HUM)来整合多尺度信息并增强网络的信息感知能力。EFNet在nuScenes数据集上取得了令人瞩目的成果,即53.3%的NDS和42.4%的mAP。与基线PointPillars相比,EFNet的NDS提高了8%,mAP提高了11.9%。结果表明,所提出的框架能够在确保可部署性的同时有效提高网络的准确性。