Suppr超能文献

运动学习改变脊髓运动神经元的轴突起始段。

Motor learning changes the axon initial segment of the spinal motoneuron.

机构信息

National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, Albany, NY, USA.

Wadsworth Center, New York State Department of Health, Albany, NY, USA.

出版信息

J Physiol. 2024 May;602(9):2107-2126. doi: 10.1113/JP283875. Epub 2024 Apr 3.

Abstract

We are studying the mechanisms of H-reflex operant conditioning, a simple form of learning. Modelling studies in the literature and our previous data suggested that changes in the axon initial segment (AIS) might contribute. To explore this, we used blinded quantitative histological and immunohistochemical methods to study in adult rats the impact of H-reflex conditioning on the AIS of the spinal motoneuron that produces the reflex. Successful, but not unsuccessful, H-reflex up-conditioning was associated with greater AIS length and distance from soma; greater length correlated with greater H-reflex increase. Modelling studies in the literature suggest that these increases may increase motoneuron excitability, supporting the hypothesis that they may contribute to H-reflex increase. Up-conditioning did not affect AIS ankyrin G (AnkG) immunoreactivity (IR), p-p38 protein kinase IR, or GABAergic terminals. Successful, but not unsuccessful, H-reflex down-conditioning was associated with more GABAergic terminals on the AIS, weaker AnkG-IR, and stronger p-p38-IR. More GABAergic terminals and weaker AnkG-IR correlated with greater H-reflex decrease. These changes might potentially contribute to the positive shift in motoneuron firing threshold underlying H-reflex decrease; they are consistent with modelling suggesting that sodium channel change may be responsible. H-reflex down-conditioning did not affect AIS dimensions. This evidence that AIS plasticity is associated with and might contribute to H-reflex conditioning adds to evidence that motor learning involves both spinal and brain plasticity, and both neuronal and synaptic plasticity. AIS properties of spinal motoneurons are likely to reflect the combined influence of all the motor skills that share these motoneurons. KEY POINTS: Neuronal action potentials normally begin in the axon initial segment (AIS). AIS plasticity affects neuronal excitability in development and disease. Whether it does so in learning is unknown. Operant conditioning of a spinal reflex, a simple learning model, changes the rat spinal motoneuron AIS. Successful, but not unsuccessful, H-reflex up-conditioning is associated with greater AIS length and distance from soma. Successful, but not unsuccessful, down-conditioning is associated with more AIS GABAergic terminals, less ankyrin G, and more p-p38 protein kinase. The associations between AIS plasticity and successful H-reflex conditioning are consistent with those between AIS plasticity and functional changes in development and disease, and with those predicted by modelling studies in the literature. Motor learning changes neurons and synapses in spinal cord and brain. Because spinal motoneurons are the final common pathway for behaviour, their AIS properties probably reflect the combined impact of all the behaviours that use these motoneurons.

摘要

我们正在研究 H 反射操作性条件反射的机制,这是一种简单的学习形式。文献中的建模研究和我们之前的数据表明,轴突起始段(AIS)的变化可能起作用。为了探索这一点,我们使用盲法定量组织学和免疫组织化学方法来研究成年大鼠中 H 反射条件反射对产生反射的脊髓运动神经元的 AIS 的影响。成功但不成功的 H 反射上调条件反射与更大的 AIS 长度和与体部的更大距离相关;更长的长度与更大的 H 反射增加相关。文献中的建模研究表明,这些增加可能会增加运动神经元的兴奋性,支持它们可能有助于 H 反射增加的假设。上调条件反射不影响 AIS 锚蛋白 G(AnkG)免疫反应性(IR)、p-p38 蛋白激酶 IR 或 GABA 能末梢。成功但不成功的 H 反射下调条件反射与 AIS 上更多的 GABA 能末梢、较弱的 AnkG-IR 和较强的 p-p38-IR 相关。更多的 GABA 能末梢和较弱的 AnkG-IR 与更大的 H 反射减少相关。这些变化可能潜在地有助于构成 H 反射减少的运动神经元发放阈值的正向变化;它们与建模结果一致,表明钠通道变化可能是负责的。H 反射下调条件反射不影响 AIS 尺寸。AIS 可塑性与 H 反射条件反射相关并可能有助于 H 反射条件反射的这一证据增加了运动学习涉及脊髓和大脑可塑性以及神经元和突触可塑性的证据。脊髓运动神经元的 AIS 特性可能反映了共享这些运动神经元的所有运动技能的综合影响。关键点:神经元动作电位通常在轴突起始段(AIS)开始。AIS 可塑性在发育和疾病中影响神经元兴奋性。在学习中是否如此尚不清楚。脊髓反射的操作性条件反射,一种简单的学习模型,改变了大鼠脊髓运动神经元的 AIS。成功但不成功的 H 反射上调条件反射与更大的 AIS 长度和与体部的更大距离相关。成功但不成功的下调条件反射与 AIS 上更多的 GABA 能末梢、较少的锚蛋白 G 和更多的 p-p38 蛋白激酶相关。AIS 可塑性与成功的 H 反射条件反射之间的关联与 AIS 可塑性与发育和疾病中的功能变化之间的关联以及文献中的建模研究预测的关联一致。运动学习改变脊髓和大脑中的神经元和突触。由于脊髓运动神经元是行为的最终共同途径,因此它们的 AIS 特性可能反映了使用这些运动神经元的所有行为的综合影响。

相似文献

7
Axon initial segment geometry in relation to motoneuron excitability.轴突起始段形态与运动神经元兴奋性的关系。
PLoS One. 2021 Nov 19;16(11):e0259918. doi: 10.1371/journal.pone.0259918. eCollection 2021.
10
Why New Spinal Cord Plasticity Does Not Disrupt Old Motor Behaviors.为何新的脊髓可塑性不会干扰旧的运动行为。
J Neurosci. 2017 Aug 23;37(34):8198-8206. doi: 10.1523/JNEUROSCI.0767-17.2017. Epub 2017 Jul 25.

本文引用的文献

2
Axon initial segment geometry in relation to motoneuron excitability.轴突起始段形态与运动神经元兴奋性的关系。
PLoS One. 2021 Nov 19;16(11):e0259918. doi: 10.1371/journal.pone.0259918. eCollection 2021.
4
SNT: a unifying toolbox for quantification of neuronal anatomy.SNT:神经元解剖结构定量分析的统一工具包。
Nat Methods. 2021 Apr;18(4):374-377. doi: 10.1038/s41592-021-01105-7. Epub 2021 Apr 1.
8
Inhibitory Synapse Formation at the Axon Initial Segment.轴突起始段的抑制性突触形成
Front Mol Neurosci. 2019 Nov 5;12:266. doi: 10.3389/fnmol.2019.00266. eCollection 2019.
10
Axon initial segments: structure, function, and disease.轴突起始段:结构、功能与疾病。
Ann N Y Acad Sci. 2018 May;1420(1):46-61. doi: 10.1111/nyas.13718. Epub 2018 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验