Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163.
Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030.
Proc Natl Acad Sci U S A. 2024 Apr 9;121(15):e2322135121. doi: 10.1073/pnas.2322135121. Epub 2024 Apr 3.
Endothelial cells (ECs) line the wall of blood vessels and regulate arterial contractility to tune regional organ blood flow and systemic pressure. Chloride (Cl) is the most abundant anion in ECs and the Cl sensitive With-No-Lysine (WNK) kinase is expressed in this cell type. Whether intracellular Cl signaling and WNK kinase regulate EC function to alter arterial contractility is unclear. Here, we tested the hypothesis that intracellular Cl signaling in ECs regulates arterial contractility and examined the signaling mechanisms involved, including the participation of WNK kinase. Our data obtained using two-photon microscopy and cell-specific inducible knockout mice indicated that acetylcholine, a prototypical vasodilator, stimulated a rapid reduction in intracellular Cl concentration ([Cl]) due to the activation of TMEM16A, a Cl channel, in ECs of resistance-size arteries. TMEM16A channel-mediated Cl signaling activated WNK kinase, which phosphorylated its substrate proteins SPAK and OSR1 in ECs. OSR1 potentiated transient receptor potential vanilloid 4 (TRPV4) currents in a kinase-dependent manner and required a conserved binding motif located in the channel C terminus. Intracellular Ca signaling was measured in four dimensions in ECs using a high-speed lightsheet microscope. WNK kinase-dependent activation of TRPV4 channels increased local intracellular Ca signaling in ECs and produced vasodilation. In summary, we show that TMEM16A channel activation reduces [Cl], which activates WNK kinase in ECs. WNK kinase phosphorylates OSR1 which then stimulates TRPV4 channels to produce vasodilation. Thus, TMEM16A channels regulate intracellular Cl signaling and WNK kinase activity in ECs to control arterial contractility.
内皮细胞(ECs)排列在血管壁上,调节动脉收缩性以调节局部器官血流和全身血压。氯离子(Cl)是 ECs 中含量最丰富的阴离子,而无赖氨酸(WNK)激酶在这种细胞类型中表达。细胞内 Cl 信号和 WNK 激酶是否调节 EC 功能以改变动脉收缩性尚不清楚。在这里,我们检验了内皮细胞内 Cl 信号调节动脉收缩性的假设,并研究了所涉及的信号机制,包括 WNK 激酶的参与。我们使用双光子显微镜和细胞特异性诱导型敲除小鼠获得的数据表明,乙酰胆碱作为一种典型的血管扩张剂,通过 TMEM16A(一种 Cl 通道)的激活,刺激阻力型动脉 ECs 中细胞内 Cl 浓度([Cl])的快速降低。TMEM16A 通道介导的 Cl 信号激活了 WNK 激酶,该激酶在 ECs 中磷酸化其底物蛋白 SPAK 和 OSR1。OSR1 以激酶依赖性方式增强瞬时受体电位香草酸 4(TRPV4)电流,并且需要位于通道 C 末端的保守结合基序。使用高速光片显微镜在 ECs 中以四维方式测量细胞内 Ca 信号。WNK 激酶依赖性激活 TRPV4 通道增加了 ECs 中的局部细胞内 Ca 信号并产生血管舒张。总之,我们表明 TMEM16A 通道的激活降低了 [Cl],从而在 ECs 中激活了 WNK 激酶。WNK 激酶磷酸化 OSR1,然后刺激 TRPV4 通道产生血管舒张。因此,TMEM16A 通道调节 ECs 中的细胞内 Cl 信号和 WNK 激酶活性以控制动脉收缩性。