The Jackson Laboratory, Bar Harbor, ME 04660, USA.
Sci Adv. 2024 Apr 5;10(14):eadj9305. doi: 10.1126/sciadv.adj9305. Epub 2024 Apr 3.
The power and scope of disease modeling can be markedly enhanced through the incorporation of broad genetic diversity. The introduction of pathogenic mutations into a single inbred mouse strain sometimes fails to mimic human disease. We describe a cross-species precision disease modeling platform that exploits mouse genetic diversity to bridge cell-based modeling with whole organism analysis. We developed a universal protocol that permitted robust and reproducible neural differentiation of genetically diverse human and mouse pluripotent stem cell lines and then carried out a proof-of-concept study of the neurodevelopmental gene . Results in vitro reliably predicted the effects of genetic background on loss-of-function phenotypes in vivo. Transcriptomic comparison of responsive and unresponsive strains identified molecular pathways conferring sensitivity or resilience to loss and highlighted differential messenger RNA isoform usage as an important determinant of response. This cross-species strategy provides a powerful tool in the functional analysis of candidate disease variants identified through human genetic studies.
通过引入广泛的遗传多样性,可以显著增强疾病建模的能力和范围。将致病突变引入单一近交系小鼠品系有时无法模拟人类疾病。我们描述了一种跨物种精确疾病建模平台,利用小鼠遗传多样性将基于细胞的建模与全器官分析联系起来。我们开发了一种通用协议,该协议允许对遗传多样性的人和小鼠多能干细胞系进行稳健且可重复的神经分化,然后对神经发育基因 进行了概念验证研究。体外结果可靠地预测了遗传背景对体内功能丧失表型的影响。对有反应和无反应品系的转录组比较确定了赋予对 缺失敏感性或弹性的分子途径,并强调了差异信使 RNA 异构体的使用作为反应的重要决定因素。这种跨物种策略为通过人类遗传研究鉴定的候选疾病变异的功能分析提供了强大的工具。