Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, South Korea.
BioPOA Co. Hwaseong-si 18469, Gyeonggi-do, South Korea.
Biochem Biophys Res Commun. 2024 May 21;709:149823. doi: 10.1016/j.bbrc.2024.149823. Epub 2024 Mar 26.
Avian pathogenic Escherichia coli (APEC) causes enormous economic losses and is a primary contributor to the emergence of multidrug resistance (MDR)-related problems in the poultry industry. Bacteriophage (phage) therapy has been successful in controlling MDR, but phage-resistant variants have rapidly emerged through the horizontal transmission of diverse phage defense systems carried on mobile genetic elements. Consequently, while multiple phage cocktails are recommended for phage therapy, there is a growing need to explore simpler and more cost-effective phage treatment alternatives. In this study, we characterized two novel O78-specific APEC phages, φWAO78-1 and φHAO78-1, in terms of their morphology, genome, physicochemical stability and growth kinetics. Additionally, we assessed the susceptibility of thirty-two O78 APEC strains to these phages. We analyzed the roles of highly susceptible cells in intestinal settlement and fecal shedding (susceptible cell-assisted intestinal settlement and shedding, SAIS) of phages in chickens via coinoculation with phages. Furthermore, we evaluated a new strategy, susceptible cell-assisted resistant cell killing (SARK), by comparing phage susceptibility between resistant cells alone and a mixture of resistant and highly susceptible cells in vitro. As expected, high proportions of O78 APEC strains had already acquired multiple phage defense systems, exhibiting considerable resistance to φWAO78-1 and φHAO78-1. Coinoculation of highly susceptible cells with phages prolonged phage shedding in feces, and the coexistence of susceptible cells markedly increased the phage susceptibility of resistant cells. Therefore, the SAIS and SARK strategies were demonstrated to be promising both in vivo and in vitro.
禽致病性大肠杆菌(APEC)导致了巨大的经济损失,是家禽业中出现多药耐药(MDR)相关问题的主要原因。噬菌体(phage)治疗在控制 MDR 方面取得了成功,但由于携带在可移动遗传元件上的各种噬菌体防御系统的水平传播,噬菌体抗性变体迅速出现。因此,尽管建议使用多种噬菌体鸡尾酒进行噬菌体治疗,但越来越需要探索更简单、更具成本效益的噬菌体治疗替代方法。在这项研究中,我们从形态学、基因组、理化稳定性和生长动力学等方面对两种新型 O78 特异性 APEC 噬菌体 φWAO78-1 和 φHAO78-1 进行了表征。此外,我们评估了 32 株 O78 APEC 菌株对这些噬菌体的敏感性。我们通过与噬菌体共同接种,分析了高敏感性细胞在噬菌体肠道定居和粪便脱落(易感细胞辅助肠道定居和脱落,SAIS)中的作用。此外,我们通过比较体外单独使用耐药细胞和混合耐药和高敏感细胞时的噬菌体敏感性,评估了一种新的策略,即易感细胞辅助耐药细胞杀伤(SARK)。正如预期的那样,高比例的 O78 APEC 菌株已经获得了多种噬菌体防御系统,对 φWAO78-1 和 φHAO78-1 表现出相当大的抗性。将高敏感性细胞与噬菌体共同接种可延长噬菌体在粪便中的脱落时间,而易感细胞的共存可显著增加耐药细胞对噬菌体的敏感性。因此,SAIS 和 SARK 策略在体内和体外均表现出良好的效果。