Almulhim Abdulaziz I, Kafy Abdulla Al, Ferdous Md Nahid, Fattah Md Abdul, Morshed Syed Riad
Department of Urban and Regional Planning, College of Architecture and Planning, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31451, Saudi Arabia.
Department of Geography & the Environment, The University of Texas at Austin, Austin, TX, 78712, USA.
J Environ Manage. 2024 Apr;357:120705. doi: 10.1016/j.jenvman.2024.120705. Epub 2024 Apr 3.
Sustainable urban development is crucial for managing natural resources and mitigating environmental impacts induced by rapid urbanization. This study demonstrates an integrated framework using machine learning-based urban analytics techniques to evaluate spatiotemporal urban expansion in Saudi Arabia (1987-2022) and quantify impacts on leading land, water, and air-related environmental parameters (EPs). Remote sensing and statistical techniques were applied to estimate vegetation health, built-up area, impervious surface, water bodies, soil characteristics, thermal comfort, air pollutants (PM, CH, CO, NO, SO), and nighttime light EPs. Regression assessment and Principal Component Analysis (PCA) were applied to assess the relationships between urban expansion and EPs. The findings highlight the substantial growth of urban areas (0.067%-0.14%), a decline in soil moisture (16%-14%), water bodies (60%-22%), a nationwide increase of PM (44 μg/m to 73 μg/m) and night light intensity (0.166-9.670) concentrations resulting in significant impacts on land, water, and air quality parameters. PCA showed vegetation cover, soil moisture, thermal comfort, PM, and NO are highly impacted by urban expansion compared to other EPs. The results highlight the need for effective and sustainable interventions to mitigate environmental impacts using green innovations and urban development by applying mixed-use development, green space preservation, green building technologies, and implementing renewable energy approaches. The framework recommended for environmental management in this study provides a robust foundation for evidence-based policies and adaptive management practices that balance economic progress and environmental sustainability. It will also help policymakers and urban planners in making informed decisions and promoting resilient urban growth.
可持续城市发展对于管理自然资源和减轻快速城市化带来的环境影响至关重要。本研究展示了一个综合框架,该框架使用基于机器学习的城市分析技术来评估沙特阿拉伯(1987 - 2022年)的时空城市扩张,并量化对主要的土地、水和与空气相关的环境参数(EPs)的影响。应用遥感和统计技术来估算植被健康状况、建成区面积、不透水表面、水体、土壤特征、热舒适度、空气污染物(PM、CH、CO、NO、SO)和夜间灯光EPs。应用回归评估和主成分分析(PCA)来评估城市扩张与EPs之间的关系。研究结果突出了城市面积的大幅增长(0.067% - 0.14%)、土壤湿度的下降(16% - 14%)、水体的减少(60% - 22%)、全国范围内PM浓度的增加(44μg/m³至73μg/m³)以及夜间灯光强度的增加(0.166 - 9.670),这些对土地、水和空气质量参数产生了重大影响。与其他EPs相比,PCA显示植被覆盖、土壤湿度、热舒适度、PM和NO受城市扩张的影响更大。结果突出表明需要采取有效和可持续的干预措施,通过应用混合用途开发、绿色空间保护、绿色建筑技术以及实施可再生能源方法,利用绿色创新和城市发展来减轻环境影响。本研究推荐的环境管理框架为基于证据的政策和适应性管理实践提供了坚实基础,这些政策和实践平衡了经济进步与环境可持续性。它还将帮助政策制定者和城市规划者做出明智决策并促进城市的弹性增长。