Suppr超能文献

基于计算机和体外实验的多重分析方法筛选红鳍东方鲀芳烃受体天然配体。

In Silico and In Vitro multiple analysis approach for screening naturally derived ligands for red seabream aryl hydrocarbon receptor.

机构信息

Department of Biology, Kyung Hee University, Seoul, Republic of Korea.

Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea.

出版信息

Ecotoxicol Environ Saf. 2024 Apr 15;275:116262. doi: 10.1016/j.ecoenv.2024.116262. Epub 2024 Apr 3.

Abstract

The aryl hydrocarbon receptor (AHR) is a key ligand-dependent transcription factor that mediates the toxic effects of compounds such as dioxin. Recently, natural ligands of AHR, including flavonoids, have been attracting physiological and toxicological attention as they have been reported to regulate major biological functions such as inflammation and anti-cancer by reducing the toxic effects of dioxin. Additionally, it is known that natural AHR ligands can accumulate in wildlife tissues, such as fish. However, studies in fish have investigated only a few ligands in experimental fish species, and the AHR response of marine fish to natural AHR ligands of various other structures has not been thoroughly investigated. To explore various natural AHR ligands in marine fish, which make up the most fish, it is necessary to develop new screening methods that consider the specificity of marine fish. In this study, we investigated the response of natural ligands by constructing in vitro and in silico experimental systems using red seabream as a model species. We attempted to develop a new predictive model to screen potential ligands that can induce transcriptional activation of red seabream AHR1 and AHR2 (rsAHR1 and rsAHR2). This was achieved through multiple analyses using in silico/ in vitro data and Tox21 big data. First, we constructed an in vitro reporter gene assay of rsAHR1 and rsAHR2 and measured the response of 10 representatives natural AHR ligands in COS-7 cells. The results showed that FICZ, Genistein, Daidzein, I3C, DIM, Quercetin and Baicalin induced the transcriptional activity of rsAHR1 and rsAHR2, while Resveratrol and Retinol did not induce the transcriptional activity of rsAHR isoforms. Comparing the EC values of the respective compounds in rsAHR1 and rsAHR2, FICZ, Genistein, and Daidzein exhibited similar isoform responses, but I3C, Baicalin, DIM and Quercetin show the isoform-specific responses. These results suggest that natural AHR ligands have specific profiling and transcriptional activity for each rsAHR isoform. In silico analysis, we constructed homology models of the ligand binding domains (LBDs) of rsAHR1 and rsAHR2 and calculated the docking energies (U_dock values) of natural ligands with measured in vitro transcriptional activity and dioxins reported in previous studies. The results showed a significant correlation (R=0.74(rsAHR1), R=0.83(rsAHR2)) between docking energy and transcriptional activity (EC) value, suggesting that the homology model of rsAHR1 and rsAHR2 can be utilized to predict the potential transactivation of ligands. To broaden the applicability of the homology model to diverse compound structures and validate the correlation with transcriptional activity, we conducted additional analyses utilizing Tox21 big data. We calculated the docking energy values for 1860 chemicals in both rsAHR1 and rsAHR2, which were tested for transcriptional activation in Tox21 data against human AHR. By comparing the U_dock energy values between 775 active compounds and 1085 inactive compounds, a significant difference (p<0.001) was observed between the U_dock energy values in the two groups, suggesting that the U_dock value can be applied to distinguish the activation of compounds. Furthermore, we observed a significant correlation (R=0.45) between the AC of Tox21 database and U_dock values of human AHR model. In conclusion, we calculated equations to translate the results of an in silico prediction model for ligand screening of rsAHR1 and rsAHR2 transactivation. This ligand screening model can be a powerful tool to quantitatively estimate AHR transactivation of major marine agents to which red seabream may be exposed. The study introduces a new screening approach for potential natural AHR ligands in marine fish, based on homology model-docking energy values of rsAHR1 and rsAHR2, with implications for future agonist development and applications bridging in silico and in vitro data.

摘要

芳基烃受体 (AHR) 是一种关键的配体依赖性转录因子,介导二恶英等化合物的毒性作用。最近,AHR 的天然配体,包括类黄酮,由于它们被报道通过减少二恶英的毒性作用来调节炎症和抗癌等主要生物学功能,因此引起了生理和毒理学的关注。此外,已知天然 AHR 配体可以在野生动物组织中积累,如鱼类。然而,鱼类的研究仅在实验鱼类物种中调查了少数几种配体,海洋鱼类对各种其他结构的天然 AHR 配体的 AHR 反应尚未得到彻底研究。为了探索构成大多数鱼类的海洋鱼类中的各种天然 AHR 配体,有必要开发考虑到海洋鱼类特异性的新筛选方法。在这项研究中,我们使用红鲷鱼作为模型物种,构建了体外和计算机实验系统,研究了天然配体的反应。我们试图开发一种新的预测模型,以筛选能够诱导红鲷鱼 AHR1 和 AHR2(rsAHR1 和 rsAHR2)转录激活的潜在配体。这是通过使用计算机/体外数据和 Tox21 大数据进行的多次分析来实现的。首先,我们构建了 rsAHR1 和 rsAHR2 的体外报告基因测定,并在 COS-7 细胞中测量了 10 种代表性天然 AHR 配体的反应。结果表明,FICZ、染料木黄酮、大豆苷元、I3C、DIM、槲皮素和黄芩苷诱导了 rsAHR1 和 rsAHR2 的转录活性,而白藜芦醇和视黄醇则没有诱导 rsAHR 同工型的转录活性。比较各自化合物在 rsAHR1 和 rsAHR2 中的 EC 值,FICZ、染料木黄酮和大豆苷元表现出相似的同工型反应,但 I3C、黄芩苷、DIM 和槲皮素则表现出同工型特异性反应。这些结果表明,天然 AHR 配体对每个 rsAHR 同工型具有特定的谱和转录活性。在计算机分析中,我们构建了 rsAHR1 和 rsAHR2 的配体结合域(LBD)的同源模型,并计算了与测量的体外转录活性和以前研究中报道的二恶英相关的天然配体的对接能(U_dock 值)。结果显示,对接能与转录活性(EC)值之间存在显著相关性(R=0.74(rsAHR1),R=0.83(rsAHR2)),表明 rsAHR1 和 rsAHR2 的同源模型可用于预测配体的潜在转录激活。为了将同源模型的适用性扩展到多种化合物结构,并验证与转录活性的相关性,我们利用 Tox21 大数据进行了额外的分析。我们计算了 rsAHR1 和 rsAHR2 中 1860 种化学物质的对接能值,这些化学物质在 Tox21 数据中针对人类 AHR 进行了转录激活测试。通过比较 775 种活性化合物和 1085 种非活性化合物之间的 U_dock 能量值,两组之间的 U_dock 能量值存在显著差异(p<0.001),表明 U_dock 值可用于区分化合物的激活。此外,我们观察到 Tox21 数据库的 AC 与人类 AHR 模型的 U_dock 值之间存在显著相关性(R=0.45)。总之,我们计算了 rsAHR1 和 rsAHR2 转录激活配体筛选的计算机预测模型结果的方程式。这种配体筛选模型可以成为一种强大的工具,用于定量估计红鲷鱼可能暴露的主要海洋试剂对 AHR 的转录激活。该研究引入了一种基于 rsAHR1 和 rsAHR2 同源模型-对接能值的海洋鱼类潜在天然 AHR 配体的筛选方法,为未来激动剂的开发和计算机与体外数据之间的应用提供了新的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验