Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain.
Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom; Early Cancer Institute, University of Cambridge, Cambridge, United Kingdom.
Talanta. 2024 Jul 1;274:125988. doi: 10.1016/j.talanta.2024.125988. Epub 2024 Mar 23.
Despite technological advances in the proteomics field, sample preparation still represents the main bottleneck in mass spectrometry (MS) analysis. Bead-based protein aggregation techniques have recently emerged as an efficient, reproducible, and high-throughput alternative for protein extraction and digestion. Here, a refined paramagnetic bead-based digestion protocol is described for Opentrons® OT-2 platform (OT-2) as a versatile, reproducible, and affordable alternative for the automatic sample preparation for MS analysis. For this purpose, an artificial neural network (ANN) was applied to maximize the number of peptides without missed cleavages identified in HeLa extract by combining factors such as the quantity (μg) of trypsin/Lys-C and beads (MagReSyn® Amine), % (w/v) SDS, % (v/v) acetonitrile, and time of digestion (h). ANN model predicted the optimal conditions for the digestion of 50 μg of HeLa extract, pointing to the use of 2.5% (w/v) SDS and 300 μg of beads for sample preparation and long-term digestion (16h) with 0.15 μg Lys-C and 2.5 μg trypsin (≈1:17 ratio). Based on the results of the ANN model, the manual protocol was automated in OT-2. The performance of the automatic protocol was evaluated with different sample types, including human plasma, Arabidopsis thaliana leaves, Escherichia coli cells, and mouse tissue cortex, showing great reproducibility and low sample-to-sample variability in all cases. In addition, we tested the performance of this method in the preparation of a challenging biological fluid such as rat bile, a proximal fluid that is rich in bile salts, bilirubin, cholesterol, and fatty acids, among other MS interferents. Compared to other protocols described in the literature for the extraction and digestion of bile proteins, the method described here allowed identify 385 unique proteins, thus contributing to improving the coverage of the bile proteome.
尽管在蛋白质组学领域取得了技术进步,但样品制备仍然是质谱 (MS) 分析的主要瓶颈。基于珠粒的蛋白质聚集技术最近作为一种高效、可重复和高通量的蛋白质提取和消化替代方法出现。在这里,描述了一种改进的基于磁性珠粒的消化方案,用于 Opentrons® OT-2 平台 (OT-2),作为一种用于 MS 分析的自动样品制备的多功能、可重复和经济实惠的替代方案。为此,应用了人工神经网络 (ANN) 通过结合胰蛋白酶/Lys-C 和珠子 (MagReSyn® Amine) 的量 (μg)、SDS 的百分比 (w/v)、乙腈的百分比 (v/v) 和消化时间 (h) 等因素,来最大限度地提高 HeLa 提取物中未切割肽的数量。ANN 模型预测了消化 50 μg HeLa 提取物的最佳条件,指出使用 2.5% (w/v) SDS 和 300 μg 珠子进行样品制备,并进行长期消化 (16h),使用 0.15 μg Lys-C 和 2.5 μg 胰蛋白酶 (≈1:17 比例)。基于 ANN 模型的结果,在 OT-2 中自动化了手动方案。通过使用不同的样品类型,包括人血浆、拟南芥叶片、大肠杆菌细胞和小鼠组织皮层,评估了自动方案的性能,在所有情况下都显示出很好的重现性和低样品间变异性。此外,我们还测试了该方法在制备具有挑战性的生物流体(如大鼠胆汁)中的性能,大鼠胆汁是一种富含胆汁盐、胆红素、胆固醇和脂肪酸等 MS 干扰物的近端流体。与文献中描述的其他用于胆汁蛋白质提取和消化的方案相比,这里描述的方法允许鉴定 385 种独特蛋白质,从而有助于提高胆汁蛋白质组的覆盖率。