Suppr超能文献

基于固定化胰蛋白酶的快速蛋白质消化在深度和高通量的 Bottom-Up 蛋白质组学中的系统评价。

Systematic Evaluation of Immobilized Trypsin-Based Fast Protein Digestion for Deep and High-Throughput Bottom-Up Proteomics.

机构信息

Department of Chemistry, Michigan State University, East Lansing, MI, USA.

出版信息

Proteomics. 2018 May;18(9):e1700432. doi: 10.1002/pmic.201700432. Epub 2018 Apr 15.

Abstract

Immobilized trypsin (IM) has been recognized as an alternative to free trypsin (FT) for accelerating protein digestion 30 years ago. However, some questions of IM still need to be answered. How does the solid matrix of IM influence its preference for protein cleavage and how well can IM perform for deep bottom-up proteomics compared to FT? By analyzing Escherichia coli proteome samples digested with amine or carboxyl functionalized magnetic bead-based IM (IM-N or IM-C) or FT, it is observed that IM-N with the nearly neutral solid matrix, IM-C with the negatively charged solid matrix, and FT have similar cleavage preference considering the microenvironment surrounding the cleavage sites. IM-N (15 min) and FT (12 h) both approach 9000 protein identifications (IDs) from a mouse brain proteome. Compared to FT, IM-N has no bias in the digestion of proteins that are involved in various biological processes, are located in different components of cells, have diverse functions, and are expressed in varying abundance. A high-throughput bottom-up proteomics workflow comprising IM-N-based rapid protein cleavage and fast CZE-MS/MS enables the completion of protein sample preparation, CZE-MS/MS analysis, and data analysis in only 3 h, resulting in 1000 protein IDs from the mouse brain proteome.

摘要

固定化胰蛋白酶(IM)在 30 年前被认为是加速蛋白质消化的游离胰蛋白酶(FT)的替代品。然而,IM 仍有一些问题需要回答。IM 的固体基质如何影响其对蛋白质切割的偏好,以及与 FT 相比,IM 在深度自上而下的蛋白质组学中表现如何?通过分析用胺或羧基功能化磁珠固定化胰蛋白酶(IM-N 或 IM-C)或 FT 消化的大肠杆菌蛋白质组样品,观察到具有近中性固体基质的 IM-N、具有负电荷固体基质的 IM-C 和 FT 具有相似的切割偏好,考虑到切割位点周围的微环境。IM-N(15 分钟)和 FT(12 小时)均从小鼠脑蛋白质组中获得约 9000 个蛋白质鉴定(IDs)。与 FT 相比,IM-N 对参与各种生物过程、位于细胞不同成分中、具有不同功能和表达丰度不同的蛋白质的消化没有偏见。基于 IM-N 的快速蛋白质切割和快速 CZE-MS/MS 的高通量自上而下蛋白质组学工作流程可在仅 3 小时内完成蛋白质样品制备、CZE-MS/MS 分析和数据分析,从而从小鼠脑蛋白质组中获得 1000 个蛋白质 IDs。

相似文献

1
Systematic Evaluation of Immobilized Trypsin-Based Fast Protein Digestion for Deep and High-Throughput Bottom-Up Proteomics.
Proteomics. 2018 May;18(9):e1700432. doi: 10.1002/pmic.201700432. Epub 2018 Apr 15.
5
Preparation and application of immobilized enzymatic reactors for consecutive digestion with two enzymes.
J Chromatogr A. 2016 Dec 16;1477:22-29. doi: 10.1016/j.chroma.2016.11.027. Epub 2016 Nov 18.
6
Uncovering immobilized trypsin digestion features from large-scale proteome data generated by high-resolution mass spectrometry.
J Chromatogr A. 2014 Apr 11;1337:40-7. doi: 10.1016/j.chroma.2014.02.014. Epub 2014 Feb 22.
7
A bifunctional monolithic column for combined protein preconcentration and digestion for high throughput proteomics research.
J Chromatogr B Analyt Technol Biomed Life Sci. 2007 Apr 15;849(1-2):223-30. doi: 10.1016/j.jchromb.2006.11.029. Epub 2006 Dec 5.
9
Self-assembly synthes is of trypsin-immobilized monolithic microreactor for fast and efficient proteolysis.
J Chromatogr A. 2021 Jan 4;1635:461742. doi: 10.1016/j.chroma.2020.461742. Epub 2020 Nov 23.
10
Development of continuous microwave-assisted protein digestion with immobilized enzyme.
Biochem Biophys Res Commun. 2014 Mar 7;445(2):491-6. doi: 10.1016/j.bbrc.2014.02.025. Epub 2014 Feb 13.

本文引用的文献

1
Highly Reproducible Automated Proteomics Sample Preparation Workflow for Quantitative Mass Spectrometry.
J Proteome Res. 2018 Jan 5;17(1):420-428. doi: 10.1021/acs.jproteome.7b00623. Epub 2017 Nov 10.
2
Limited proteolysis in porous membrane reactors containing immobilized trypsin.
Analyst. 2017 Jul 10;142(14):2578-2586. doi: 10.1039/c7an00778g.
3
Enzymatic Reactor with Trypsin Immobilized on Graphene Oxide Modified Polymer Microspheres To Achieve Automated Proteome Quantification.
Anal Chem. 2017 Jun 20;89(12):6324-6329. doi: 10.1021/acs.analchem.7b00682. Epub 2017 Jun 1.
4
In-Depth Proteome Coverage by Improving Efficiency for Membrane Proteome Analysis.
Anal Chem. 2017 May 16;89(10):5179-5185. doi: 10.1021/acs.analchem.6b04232. Epub 2017 Apr 28.
5
Characterization of an immobilized enzyme reactor for on-line protein digestion.
J Chromatogr A. 2016 Dec 9;1476:1-8. doi: 10.1016/j.chroma.2016.11.021. Epub 2016 Nov 15.
6
The Perseus computational platform for comprehensive analysis of (prote)omics data.
Nat Methods. 2016 Sep;13(9):731-40. doi: 10.1038/nmeth.3901. Epub 2016 Jun 27.
7
Plasma Proteome Profiling to Assess Human Health and Disease.
Cell Syst. 2016 Mar 23;2(3):185-95. doi: 10.1016/j.cels.2016.02.015.
8
Protein Analysis by Ambient Ionization Mass Spectrometry Using Trypsin-Immobilized Organosiloxane Polymer Surfaces.
Anal Chem. 2015 Dec 15;87(24):12324-30. doi: 10.1021/acs.analchem.5b03669. Epub 2015 Nov 24.
9
Cell type- and brain region-resolved mouse brain proteome.
Nat Neurosci. 2015 Dec;18(12):1819-31. doi: 10.1038/nn.4160. Epub 2015 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验