Trilling Chiara R, Weng Jui-Hung, Sharma Pallavi Kaila, Nolte Viktoria, Wu Jian, Ma Wen, Boassa Daniela, Taylor Susan S, Herberg Friedrich W
Department of Biochemistry, University of Kassel, Kassel, Germany.
Department of Pharmacology, University of California, San Diego, CA, USA.
NPJ Parkinsons Dis. 2024 Apr 3;10(1):75. doi: 10.1038/s41531-024-00683-5.
Mutations of the human leucine-rich repeat kinase 2 (LRRK2) have been associated with both, idiopathic and familial Parkinson's disease (PD). Most of these pathogenic mutations are located in the kinase domain (KD) or GTPase domain of LRRK2. In this study we describe a mechanism in which protein kinase activity can be modulated by reversible oxidation or reduction, involving a unique pair of adjacent cysteines, the "CC" motif. Among all human protein kinases, only LRRK2 contains this "CC" motif (C2024 and C2025) in the Activation Segment (AS) of the kinase domain. In an approach combining site-directed mutagenesis, biochemical analyses, cell-based assays, and Gaussian accelerated Molecular Dynamics (GaMD) simulations we could attribute a role for each of those cysteines. We employed reducing and oxidizing agents with potential clinical relevance to investigate effects on kinase activity and microtubule docking. We find that each cysteine gives a distinct contribution: the first cysteine, C2024, is essential for LRRK2 protein kinase activity, while the adjacent cysteine, C2025, contributes significantly to redox sensitivity. Implementing thiolates (R-S) in GaMD simulations allowed us to analyse how each of the cysteines in the "CC" motif interacts with its surrounding residues depending on its oxidation state. From our studies we conclude that oxidizing agents can downregulate kinase activity of hyperactive LRRK2 PD mutations and may provide promising tools for therapeutic strategies.
人类富含亮氨酸重复激酶2(LRRK2)的突变与特发性和家族性帕金森病(PD)均有关联。这些致病突变大多位于LRRK2的激酶结构域(KD)或GTPase结构域。在本研究中,我们描述了一种机制,即蛋白激酶活性可通过可逆的氧化或还原进行调节,这涉及一对独特的相邻半胱氨酸,即“CC”基序。在所有人类蛋白激酶中,只有LRRK2在激酶结构域的激活片段(AS)中含有这种“CC”基序(C2024和C2025)。通过结合定点诱变、生化分析、基于细胞的检测以及高斯加速分子动力学(GaMD)模拟的方法,我们能够确定每个半胱氨酸的作用。我们使用具有潜在临床相关性的还原剂和氧化剂来研究其对激酶活性和微管对接的影响。我们发现每个半胱氨酸都有不同的作用:第一个半胱氨酸C2024对LRRK2蛋白激酶活性至关重要,而相邻的半胱氨酸C2025对氧化还原敏感性有显著贡献。在GaMD模拟中引入硫醇盐(R-S)使我们能够分析“CC”基序中的每个半胱氨酸如何根据其氧化状态与其周围残基相互作用。从我们的研究中我们得出结论,氧化剂可以下调LRRK2 PD突变体的过度活跃的激酶活性,并可能为治疗策略提供有前景的工具。