Clinical Laboratory, Chongqing Jiulongpo District People's Hospital, Chongqing 400050, China.
Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.
J Mater Chem B. 2024 May 1;12(17):4063-4079. doi: 10.1039/d3tb02947f.
DNA methylation is the process by which specific bases on a DNA sequence acquire methyl groups under the catalytic action of DNA methyltransferases (DNMT). Abnormal changes in the function of DNMT are important markers for cancers and other diseases; therefore, the detection of DNMT and the selection of its inhibitors are critical to biomedical research and clinical practice. DNA molecules can undergo intermolecular assembly to produce functional aggregates because of their inherently stable physical and chemical properties and unique structures. Conventional DNMT detection methods are cumbersome and complicated processes; therefore, it is necessary to develop biosensing technology based on the assembly of DNA nanostructures to achieve rapid analysis, simple operation, and high sensitivity. The design of the relevant program has been employed in life science, anticancer drug screening, and clinical diagnostics. In this review, we explore how DNA assembly, including 2D techniques like hybridization chain reaction (HCR), rolling circle amplification (RCA), catalytic hairpin assembly (CHA), and exponential isothermal amplified strand displacement reaction (EXPAR), as well as 3D structures such as DNA tetrahedra, G-quadruplexes, DNA hydrogels, and DNA origami, enhances DNMT detection. We highlight the benefits of these DNA nanostructure-based biosensing technologies for clinical use and critically examine the challenges of standardizing these methods. We aim to provide reference values for the application of these techniques in DNMT analysis and early cancer diagnosis and treatment, and to alert researchers to challenges in clinical application.
DNA 甲基化是指在 DNA 甲基转移酶(DNMT)的催化作用下,DNA 序列上的特定碱基获得甲基基团的过程。DNMT 功能异常的改变是癌症和其他疾病的重要标志物;因此,DNMT 的检测及其抑制剂的选择对生物医学研究和临床实践至关重要。由于 DNA 分子具有固有稳定的物理化学性质和独特的结构,它们可以通过分子间组装产生功能性聚集体。传统的 DNMT 检测方法繁琐复杂;因此,有必要开发基于 DNA 纳米结构组装的生物传感技术,以实现快速分析、简单操作和高灵敏度。该相关方案的设计已应用于生命科学、抗癌药物筛选和临床诊断。在这篇综述中,我们探讨了 DNA 组装(包括 2D 技术,如杂交链式反应(HCR)、滚环扩增(RCA)、催化发夹组装(CHA)和指数等温扩增链置换反应(EXPAR),以及 3D 结构,如 DNA 四面体、G-四联体、DNA 水凝胶和 DNA 折纸)如何增强 DNMT 检测。我们强调了这些基于 DNA 纳米结构的生物传感技术在临床应用中的优势,并批判性地考察了这些方法标准化的挑战。我们旨在为这些技术在 DNMT 分析和早期癌症诊断和治疗中的应用提供参考价值,并提醒研究人员注意临床应用中的挑战。