Stanford University School of Medicine, Stanford, CA.
Stanford Graduate School of Business, Stanford, CA.
Mayo Clin Proc. 2024 Sep;99(9):1411-1421. doi: 10.1016/j.mayocp.2024.01.005. Epub 2024 Apr 4.
To evaluate the ability of routinely collected electronic health record (EHR) use measures to predict clinical work units at increased risk of burnout and potentially most in need of targeted interventions.
In this observational study of primary care physicians, we compiled clinical workload and EHR efficiency measures, then linked these measures to 2 years of well-being surveys (using the Stanford Professional Fulfillment Index) conducted from April 1, 2019, through October 16, 2020. Physicians were grouped into training and confirmation data sets to develop predictive models for burnout. We used gradient boosting classifier and other prediction modeling algorithms to quantify the predictive performance by the area under the receiver operating characteristics curve (AUC).
Of 278 invited physicians from across 60 clinics, 233 (84%) completed 396 surveys. Physicians were 67% women with a median age category of 45 to 49 years. Aggregate burnout score was in the high range (≥3.325/10) on 111 of 396 (28%) surveys. Gradient boosting classifier of EHR use measures to predict burnout achieved an AUC of 0.59 (95% CI, 0.48 to 0.77) and an area under the precision-recall curve of 0.29 (95% CI, 0.20 to 0.66). Other models' confirmation set AUCs ranged from 0.56 (random forest) to 0.66 (penalized linear regression followed by dichotomization). Among the most predictive features were physician age, team member contributions to notes, and orders placed with user-defined preferences. Clinic-level aggregate measures identified the top quartile of clinics with 56% sensitivity and 85% specificity.
In a sample of primary care physicians, routinely collected EHR use measures demonstrated limited ability to predict individual burnout and moderate ability to identify high-risk clinics.
评估常规电子健康记录 (EHR) 使用指标预测临床工作单位倦怠风险增加和最需要有针对性干预的能力。
在这项针对初级保健医生的观察性研究中,我们编制了临床工作量和 EHR 效率指标,然后将这些指标与 2019 年 4 月 1 日至 2020 年 10 月 16 日期间进行的 2 年健康调查(使用斯坦福职业满意度指数)进行了链接。医生被分为培训和确认数据集,以开发倦怠预测模型。我们使用梯度提升分类器和其他预测建模算法通过接受者操作特征曲线下的面积 (AUC) 来量化预测性能。
在来自 60 个诊所的 278 名受邀医生中,有 233 名(84%)完成了 396 次调查。医生中有 67%是女性,中位数年龄在 45 至 49 岁之间。在 396 次调查中的 111 次(28%)调查中,综合倦怠评分处于较高范围(≥3.325/10)。使用 EHR 使用指标预测倦怠的梯度提升分类器的 AUC 为 0.59(95%CI,0.48 至 0.77),精确召回曲线下面积为 0.29(95%CI,0.20 至 0.66)。其他模型的确认集 AUC 范围为 0.56(随机森林)至 0.66(惩罚线性回归后二分类)。最具预测性的特征包括医生年龄、团队成员对记录的贡献以及根据用户定义的首选项下达的订单。诊所级别的综合指标确定了前四分之一的诊所,其敏感性为 56%,特异性为 85%。
在初级保健医生的样本中,常规收集的 EHR 使用指标预测个体倦怠的能力有限,识别高风险诊所的能力中等。