Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Analysis Group, Inc., Boston, Massachusetts, USA.
Clin Infect Dis. 2024 Aug 16;79(2):295-304. doi: 10.1093/cid/ciae171.
In clinical practice, challenges in identifying patients with uncomplicated urinary tract infections (uUTIs) at risk of antibiotic nonsusceptibility may lead to inappropriate prescribing and contribute to antibiotic resistance. We developed predictive models to quantify risk of nonsusceptibility to 4 commonly prescribed antibiotic classes for uUTI, identify predictors of nonsusceptibility to each class, and construct a corresponding risk categorization framework for nonsusceptibility.
Eligible females aged ≥12 years with Escherichia coli-caused uUTI were identified from Optum's de-identified Electronic Health Record dataset (1 October 2015-29 February 2020). Four predictive models were developed to predict nonsusceptibility to each antibiotic class and a risk categorization framework was developed to classify patients' isolates as low, moderate, and high risk of nonsusceptibility to each antibiotic class.
Predictive models were developed among 87 487 patients. Key predictors of having a nonsusceptible isolate to ≥3 antibiotic classes included number of previous UTI episodes, prior β-lactam nonsusceptibility, prior fluoroquinolone treatment, Census Bureau region, and race. The risk categorization framework classified 8.1%, 14.4%, 17.4%, and 6.3% of patients as having isolates at high risk of nonsusceptibility to nitrofurantoin, trimethoprim-sulfamethoxazole, β-lactams, and fluoroquinolones, respectively. Across classes, the proportion of patients categorized as having high-risk isolates was 3- to 12-fold higher among patients with nonsusceptible isolates versus susceptible isolates.
Our predictive models highlight factors that increase risk of nonsusceptibility to antibiotics for uUTIs, while the risk categorization framework contextualizes risk of nonsusceptibility to these treatments. Our findings provide valuable insight to clinicians treating uUTIs and may help inform empiric prescribing in this population.
在临床实践中,识别有非复杂性尿路感染(uUTI)风险的患者并确定其对抗生素不敏感可能会导致不适当的处方,并导致抗生素耐药性的产生。我们开发了预测模型来量化对 4 种常用于治疗 uUTI 的抗生素类别的不敏感性风险,确定每种类别的不敏感性预测因素,并构建相应的不敏感性风险分类框架。
从 Optum 的去识别电子健康记录数据集(2015 年 10 月 1 日至 2020 年 2 月 29 日)中筛选出年龄≥12 岁且由大肠埃希菌引起的 uUTI 合格女性患者。开发了 4 种预测模型来预测对每种抗生素类别的不敏感性,并开发了风险分类框架来将患者的分离物分类为对每种抗生素类别的低、中、高不敏感性风险。
在 87487 名患者中建立了预测模型。对 3 种及以上抗生素类别的不敏感分离物的主要预测因素包括既往 UTI 发作次数、既往β-内酰胺类药物不敏感、氟喹诺酮类药物治疗史、人口普查局区域和种族。风险分类框架将 8.1%、14.4%、17.4%和 6.3%的患者分别归类为对呋喃妥因、复方磺胺甲噁唑、β-内酰胺类和氟喹诺酮类药物不敏感的分离物的高风险,而在不同的类别中,对不敏感分离物的患者归类为高风险分离物的比例是对敏感分离物的 3 至 12 倍。
我们的预测模型突出了增加 uUTI 抗生素不敏感性风险的因素,而风险分类框架则使这些治疗方法的不敏感性风险具有背景意义。我们的研究结果为治疗 uUTI 的临床医生提供了有价值的见解,并可能有助于为该人群提供经验性处方。